求原点到曲面z²=xy x-y 4的最短距离

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:53:52
求原点到曲面z²=xy x-y 4的最短距离
用|z|表示复数z在平面内对应的点到原点的距离,已知|z|=2+z-4i,求复数z

设Z=x+yi,由条件|z|=2+z-4i知道sqrt(x^2+y^2)=2+x+(y-4)i所以y-4=0,2+x=sqrt(x^2+y^2)求得x=3,y=4,即Z=3+4i

求曲面z∧2-xy=1上到原点最近的点

答案是1相当于有一个球面:x^2+y^2+z^2=R^2;与z∧2-xy=1相切,求最小的R消去z,得R^2=x^2+y^2+xy+1;相当于求g=x^2+y^2+xy+1的最小值,连续可导,求偏导得

证明在光滑曲面F(x,y,z)=0上距原点距离最近的点的法线必过原点.

首先如果曲面经过原点的话,那么曲面上距原点最近的点当然就是原点了,所以原点处曲面的法线当然经过原点.下面只证曲面不过原点的情况,设点(x,y,z)≠(0,0,0),则使该点到原点距离最小就是说使得x^

z=xy是什么曲面

可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就

试求曲面z=1a

由题意,曲面与柱面的交线在xoy面的投影为x2+y2=a2所设所截的曲面为∑,则∑在xoy面的投影为D={(x,y)|x2+y2≤a2}∴所求曲面的面积为A=∫∫dS=∫∫D1+zx2+zy2dxdy

求原点到曲面z^2=xy+x-y+4的最短距离,

因为上式是一个空间曲面,要求原点到曲面最短距离,可以想象成有个球体与这个曲面相切,球的半径r就是最短距离所以设x^2+y^2+z^2=r^2球与曲面相交即x^2+y^2+xy+x-y+4=r^2进行配

求原点到曲面在z^2=xy+x-y+4的最短距离

很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!

在曲面z=xy上求一点,使该点处曲面的法线垂直于平面x+3y+z+9=0

http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-

高等数学旋转曲面问题:(x/2)=y=-(z-1)绕x轴旋转,求此旋转曲面.

设A(x1,y1,z1)为x/2=y=-(z-1)上的任意点,其关于x轴的对称点为A'(x,y,z).易知:x=x1,y1=(x1)/2,z1=1-(x1)/2,y+z=y1+z1→2(y+z)=x-

已知x+y+z=0,x2+y2+z2=1,求xy+yz+xz,x4+y4+z4的解

(x+y+z)^2=[(x+y)+z]^2=(x^2+2xy+y^2)+z^2+2zx+2zy=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2(xy+xz+yz)=0x+y

求曲面xy-z^2+1=0上离原点最近的点

xy-z^2+1=0=>z^2=xy+1x^2+y^2+z^2=x^2+y^2+xy+1=(x+y/2)^2+3y^2/4+1>=1当且仅当x=y=0,z=正负1的时候成立,因此,离原点最近的点是(0

求用matlab画三维函数z=xyx+y+z=1图像

figureezmesh('x*y')holdonezmesh('1-x-y')holdoff再问:不是很清楚。这个间距太大了,,可不可以精度大一些。。

求原点到曲面(x-y)^2-z^2=1的最短距离.

貌似是根号2/2思路是对的呀分别对x,y,z偏导得x/根号(x^2+y^2+z^2)+2к(x-y)=0y/根号(x^2+y^2+z^2)-2к(x-y)=0z/根号x^2+y^2+z^2+2кz=0

已知x+y+z=0,求x4+y4+z4-2x2y-2y2z2-2z2x2的值

(x2+z2)(x2+y2)(y2+z2)=(x+y)2-2xy×(x+z)2-2xz×(y+z)2-2yz--之后不清楚了

求曲面(e^z)-z+xy=4的切平面及法线方程.

求曲面(e^z)-z+xy=4的切平面及法线方程.设曲面方程F(x,y,z)=(e^z)-z+xy-4=0;点M(xo,yo,zo)是该曲面上的任意一点.∂F/∂x=y;

求曲面z=x^2+y^2与平面x+y+2z=2的交线到坐标原点的最大和最小距离

联立两个方程即为直线的方程.把两个面方程的法向量叉乘可得到直线的方向向量.令Z等于一个数(比如1).可得到直线上的一个点(1,-1,1).便可得直线的点向式方程和参数方程.没算错的话参数方程应该是{x

曲面x^2+y^2-z^2=1 到原点的最短的距离是

这个题目比较简单,不用偏导数也能得出答案的.曲面满足x^2+y^2=1+z^2点(x,y,z)到原点O的距离d满足d^2=x^2+y^2+z^2=1+2z^2因为z可以取到0,所以d^2=1+2z^2

平面x+2y+3z=0到曲面z=x^2+2y的最短距离怎么求

可以转化为最优化问题(在曲面上任取一点,求点到平面距离最小),用拉格朗日乘数法d=|x0+2y0+3z0|/√(1+2²+3²)=|x0+2y0+3z0|/√14目标函数:minf

求曲面xyz=1上找一点使其到原点(0,0,0)的距离最短

用均值不等式,x^2+y^2+z^2>=3[x^2*y^2*z^2]^(1/3)=3所以最小值是根号3当|x|=|y|=|z|=1时取得