求二重积分{(e^x2) y^2}dr,其中x^2 y^2=9

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:14:21
求二重积分{(e^x2) y^2}dr,其中x^2 y^2=9
求二重积分,被积函数是e……(y/x+y),积分区域是x+y=2,x轴,y轴围成的三角形内.

选用极坐标系,积分区域D:0≤θ≤π/2,0≤r≤2/(sinθ+cosθ)I=∫[0,π/2]dθ∫[0,2/(sinθ+cosθ)]e^[sinθ/(sinθ+cosθ)]*rdr=∫[0,π/2

已知二重积分区域D由直线y=x,圆x^2+y^2=2y,以及y轴围成,求二重积分∫∫xydxdy

用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r

求二重积分∫∫√(x2+y2)dxdy其中积分区域{(x,y)|x2+y2

用极坐标来解吧,令x=r*cosθ,y=r*sinθ那么显然√(x²+y²)=r,由x²+y²≤2x可以得到r²≤2r*cosθ即r≤2cosθ故r的

计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy

原式=∫dy∫e^(-y²/2)dx(作积分顺序变换)=∫(1-y²)e^(-y²/2)dy=∫e^(-y²/2)dy-∫y²e^(-y²/

利用二重积分求y=e^x y=e^2x x=1 所围成图形的面积

答:做出图像,得y=e^(2x)在y=e^x上方.且在(0,1)处有交点.∫0到1dx∫e^x到e^(2x)dy=e^2/2-e+1/2

求y=ln cosx+e^x2的导数

一阶的话分别求导,再相加,lncosx求导是-tanx,e^x2求导是e^x,加起来答案是y'=-tanx+e^x

计算二重积分∫[1,3]dx∫[x-1,2]e^( y^2) dy

∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y

二重积分~两题两题∫∫(e^x2)dxdy,D由y=x,y=x^3所围在第一象限∫∫e^-y2(即系e的-y^2次方),

y=x与y=x^3在第一象限的交点为(1,1)该积分区域既是X-型的,又是Y-型的X-型:∫0到1∫x^3到x(e^x2)dydx=∫0到1(e^x2)(x-x^3)dx=1/2*[(2-x^2)*e

求二重积分∫(0,2)dx∫(x,2)e^(-y^2)dy

交换积分次序:∫(0,2)dx∫(x,2)e^(-y²)dy=∫(0,2)dy∫(0,y)e^(-y²)dx=∫(0,2)ye^(-y²)dy=(1/2)∫(0,2)e^

求e^(x+y)的二重积分,其中D是闭区域|x|+|y|

对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y)  上下实

二重积分 上下限都给出,都是0~2,求X+Y的二重积分,很久没有看书了,忘了,

求时将不求的当作常数是要领.∫0-2∫0-2(x+y)dxdy=【注:先对y求积分,x视作为常数】∫0-2(xy+y²/2)Ⅰ0-2)dx=∫0-2(2x+2)dx=(x²+2x)

求二重积分 D:X方+Y方

∫∫D|1-x²-y²|dxdy=∫∫D¹(1-x²-y²)dxdy+∫∫D²(x²+y²-1)dxdyD¹:

求二重积分∫(1/2—1)dy∫(y—√y)e^(y/x)dx

不能先对x积分,需交换积分次序:D:y≤x≤√y,1/2≤y≤1分成两个区域:D1:1/2≤y≤x,1/2≤x≤√2/2D2:x²≤y≤x,√2/2≤x≤1I=∫∫D1e^(y/x)dydx

求高数二重积分做法二重积分e^(x+y)dt D={(X,Y) /X/+/y/

关键是积分区域的处理! 另外膜拜一下一楼,这个题目也能用极坐标?

求y=e-x(x2-2x+3)的导数

X代表的一样吗?如果一样,那么是负三.

二重积分求∫∫[y/(1+x^2+y^2)^(3/2)]dxdy 其中 D:0

化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2

二重积分啊!求二重积分

再问:求大神讲解下那个积分的上下限是怎么算出来的,,本人菜鸟啊,,,再答:对于直角坐标来说下方的函数为下限,上方的函数为上限对于极坐标来说若区域是只由一条曲线围成,则r的范围:下限是原点,上限是该曲线

二重积分的计算 题目是求∫∫(e的y/x次方)dxdy 其中D是由曲线y=x^2直线y=x以及x=1/2围成的区域

∫∫(e^(y/x)dxdy=∫[0,1/2]dx∫[x^2,x](e^(y/x)dy=∫[0,1/2]dx{(xe^(y/x)|[x^2,x]}=∫[0,1/2](xe-xe^x)dx=ex^2/2

求e^y^2的二重积分,其中D是第一象限内由直线y=x,和曲线y=x^(1/3)围成的闭区域

交点为(0,0)和(1,1).先对x积分后对y积分,积分区域是0