求二重积分∫∫√(x2+y2)dxdy其中积分区域{(x,y)|x2+y2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 11:53:31
求二重积分∫∫√(x2+y2)dxdy其中积分区域{(x,y)|x2+y2
用极坐标来解吧,
令x=r*cosθ,y=r*sinθ
那么显然√(x²+y²)=r,
由x²+y²≤2x可以得到
r²≤2r*cosθ即r≤2cosθ
故r的范围是0到2cosθ
而0≤y≤x,
则0≤sinθ≤cosθ
所以θ的范围是0到π/4
那么
∫∫√(x²+y²)dxdy
=∫∫ r² dr *dθ
=∫(上限π/4,下限0)dθ *∫(上限2cosθ,下限0) r² dr
=1/3 *∫(上限π/4,下限0) (2cosθ)^3dθ
=8/3 *∫(上限π/4,下限0) (cosθ)^3dθ
=8/3 *∫(上限√2 /2,下限0) cos²θ d(sinθ)
=8/3 *∫(上限√2 /2,下限0) 1 -sin²θ d(sinθ)
=8/3 *[sinθ - 1/3 *(sinθ)^3] 带入sinθ的上限√2 /2和下限0
=10√2 /9
令x=r*cosθ,y=r*sinθ
那么显然√(x²+y²)=r,
由x²+y²≤2x可以得到
r²≤2r*cosθ即r≤2cosθ
故r的范围是0到2cosθ
而0≤y≤x,
则0≤sinθ≤cosθ
所以θ的范围是0到π/4
那么
∫∫√(x²+y²)dxdy
=∫∫ r² dr *dθ
=∫(上限π/4,下限0)dθ *∫(上限2cosθ,下限0) r² dr
=1/3 *∫(上限π/4,下限0) (2cosθ)^3dθ
=8/3 *∫(上限π/4,下限0) (cosθ)^3dθ
=8/3 *∫(上限√2 /2,下限0) cos²θ d(sinθ)
=8/3 *∫(上限√2 /2,下限0) 1 -sin²θ d(sinθ)
=8/3 *[sinθ - 1/3 *(sinθ)^3] 带入sinθ的上限√2 /2和下限0
=10√2 /9
求二重积分∫∫√(x2+y2)dxdy其中积分区域{(x,y)|x2+y2
计算二重数积分D∫∫sin√(x2+y2) dxdy,其中D为{(x,y| π2≤x2+y2≤4π2}.
利用极坐标求积分∫∫(x2+y2)dxdy 其中D是由直线y=x,y=x+a,y=a及y=3a(a>0)所围成的区域
求·二重积分∫∫(x+y)^2dxdy,其中积分区域D:x^2+y^2≤4
求二重积分∫∫1 / √(1+x²+y²)dxdy,其中积分区域D={(x,y)|x²+y
一道曲线积分题.求∫c (x2+y2) ds,其中C是x2+y2+z2=R2与x+y+z=0的交线
二重积分由x2+y2<=2x,0<=y<=x围成,被积函数为根号下(x2+y2)dxdy,
计算二重积分∫∫x^1/2 dxdy,其中积分区域D是{(x,y)|x^2+y^2≤x}. 求大神解答,谢谢!
计算二重积分∫∫ln(x^2+y^2)dxdy,其中积分区域D={(x,y)/1
求二重积分∫∫根号下(R^2 -X^2-Y^2)dxdy,其中积分区域D为圆周X^2+Y^2=RX.
利用球坐标求积分x2+y2+z2,其中区域是锥面z=x2+y2开根号与球面x2+y2+z2=r2所
求教高数二重积分计算二重积分∫∫ln(x^2+y^2)dxdy,其中积分区域D={(x,y)/1