作业帮 > 数学 > 作业

已知二重积分区域D由直线y=x,圆x^2+y^2=2y,以及y轴围成,求二重积分∫∫xydxdy

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 11:24:42
已知二重积分区域D由直线y=x,圆x^2+y^2=2y,以及y轴围成,求二重积分∫∫xydxdy
已知二重积分区域D由直线y=x,圆x^2+y^2=2y,以及y轴围成,求二重积分∫∫xydxdy
用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ
∫∫ xy dxdy
=∫∫ r³cosθsinθ drdθ
=∫[π/4→π/2] cosθsinθ dθ∫[0→2sinθ] r³ dr
=(1/4)∫[π/4→π/2] r^4cosθsinθ |[0→2sinθ] dθ
=4∫[π/4→π/2] cosθ(sinθ)^5 dθ
=4∫[π/4→π/2] (sinθ)^5 d(sinθ)
=(2/3)(sinθ)^6 |[π/4→π/2]
=(2/3)(1-1/8)
=7/12
希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮.
再问: r的范围不应该是(2sinθ→2)吗?怎么是(0→2sinθ)
再答: r指的是区域内的点与原点的距离,不是圆周上的点的范围。