方阵AB=0则A与B为奇异阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:50:52
方阵AB=0则A与B为奇异阵
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

设A与B皆为n阶方阵,证明,如果AB=0那么秩A=秩B

见http://zhidao.baidu.com/question/449580128.html

设A为n阶方阵,B为N×S矩阵,且r(B)=n.证明若AB=0则A=0

若AB=0,则说明B的列向量都是AX=0的解因为r(B)=n,所以AX=0至少有n个线性无关的解设解集为S,则r(S)=n-r(A)>=n即r(A)=0所以r(A)=0即A=0

设n阶方阵A与B中有一个是非奇异的,求证矩阵AB相似于BA

n阶方阵A与B中有一个是非奇异的,不妨设A非奇异,则BA=A^(-1)ABA可见AB相似于BA

线性代数证明题 若A和B为奇异的n阶方阵,则A+B也为奇异的.

这个结论是不成立的.如:A=[10][00]B=[00][01]A+B=[10][01]|A|=|B|=0|A+B|=1

设矩阵A=【】,求一秩为2的三阶方阵B使AB=0

AB=0,即B的每一列均为AX=0的解,现在对AX=0求解——对A进行初等行变换得112,从而满足x1+x2+2x3=0的解均为所求解.000000得AX=0的全部解为u(1,-1,0)+v(2,0,

已知n阶方阵A的伴随矩阵是奇异矩阵,伴随矩阵各行元素之和为3.则Ax=0的基础解系

由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..

线性代数 方阵的行列式的性质:请证明方阵的行列式的性质:A,B为方阵,则AB乘积的行列式等于A的行列式与B

可以.需注意:1.某行的K倍加到另一行时要左乘K,列变换时右乘K2.分块矩阵不满足对角线法则行列式0AmBn0=(-1)^mn|A||B|再问:你说的K是——可以和子块矩阵相乘的矩阵吗再答:是的!你对

设A,B为N阶方阵,若A可逆,证明AB与BA相似

因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.

A.B为n阶方阵且A+B+AB=0,证明AB=BA?

A+B+AB=0(I+A)(I+B)=-I即I+A可逆,逆矩阵为-(I+B).因此(I+B)(I+A)=-I即A+B+BA=0所以AB=BA

如果A,B都为正交矩阵,且detA=-detB求证A+B为奇异方阵

由A,B正交,AA'=A'A=E,BB=B'B=E|A'(A+B)|=|A'A+A'B|=|E+A'B||B'(A+B)|=|B'A+B'B|=|B'A+E|=|(B'A+E)'|=|A'B+E||A

证明:n阶矩阵AB,C=A*B,若B为奇异是,你C一定是奇异的

根据方阵行列式运算满足:|AB|=|A||B|有:|C|=|AB|=|A||B|若B为奇异阵,即|B|=0,则有|C|=|A||B|=0,即C为奇异阵.

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A,B为n阶方阵,满足关系AB=0,则必有_____

AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

设A,B均为n阶方阵,且B不等于零,若AB=0,则|A|=?

AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB

方阵|AB|=|BA|成立吗?A,B为n阶方阵.

不一定成立举反例就行了