A和B均为实对称阵,求证:存在正交阵Q,使 与 同为对角 阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:17:24
A和B均为实对称阵,求证:存在正交阵Q,使 与 同为对角 阵
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

设n阶矩阵A对称正定,n阶矩阵B为对称矩阵,证明存在合同变换矩阵P,使得P'AP与P'BP均为对角矩阵

存在可逆矩阵M使得M'AM=E此时M'BM仍然对称,从而存在正交矩阵Q使得Q'M'BMQ=DD为对角阵.令P=MQ即可

实对称矩阵对角化问题设A为3介实对称矩阵,可知存在正交阵P,使得P'-1AP=B,B为其特征值构成的对角矩阵,为什么求出

必须单位化!因为正交矩阵P是由A的特征向量构成的而矩阵P是正交矩阵的充分必要条件是它的列(行)向量组是标准正交向量组,即两两正交且长度为1.所以必须单位化.不对.单位化后得到的P才是正交矩阵.PS.用

AB均为n阶实对称阵,A正定,证明存在n阶实可逆阵P使P’AP和P‘BP均为对角阵(P‘为转置矩阵)

因为A正定所以存在可逆矩阵C使得C'AC=E.对实对称矩阵C'BC,存在正交矩阵D,使得D'(C'BC)D为对角矩阵而D'(C'AC)D=D'D=E也是对角矩阵故令P=CD即满足要求.再问:为什么C'

设A为N阶实矩阵,且有N个正交的特征向量,证明:1A为实对称矩阵;2存在实数k及实对称矩阵B,A+kE=B^2

【1】令P,Lambda分别为特征矩阵和特征值矩阵,则.【2】因为P是个正交矩阵,所以PP^-1是个常数,

A为n阶实对称矩阵,B为半正定矩阵,求证AB特征值全为实数

注意CC^TB相似于C^{-1}(CC^TB)C=C^TBC即可再问:条件没说A正定额。再答:没看清楚,不过好办,假定B正定,用上述方法得到AB的特征值是实数。若B奇异,取正定矩阵序列B_k=B+1/

A秩为r的n阶实对称矩阵证A是半正定矩阵充要条件是存在r行n列的秩为r的实矩阵B,使A=B'B

我们一步一步来.首先对于实数域上的列向量X,有X'X≥0,且等号成立当且仅当X=0.由这一点我们可以证明,对实矩阵B,有B'B的秩R(B'B)=B的秩R(B).方法是考虑两个线性方程组BX=0与B'B

高等代数(线性代数)设A为n阶实对称矩阵,证明:存在唯一n阶实对称矩阵B使得A=B的三次方

如图再问:这个题还需要证唯一性,唯一性怎么证呢?再答:不好意思,唯一性想不出来。

已知A为实对称矩阵,A的平方=0.求证:A=0

反证法:设A为实对称矩阵,并且A不等于零,不妨设A的第i行有一个非零元素,则A的平方的第i行第i列处的元素是A的第i行元素的平方和,由前面的假设,A的平方将不等于零,矛盾.

老师,请帮我看看这个题 A为n阶实对称矩阵,求证:存在n阶方阵B,使得A=ABA 且B=BAB

不需要实对称的条件,一般的方阵都可以做相抵标准型A=P*diag{I_r,0}*Q,那么取B=Q^{-1}*diag{I_r,0}*P^{-1}即可

A为实对称阵,设li为其第i个特征向量,代数重数为a,求证对应特征向量几何重数也为a.

一般来讲直接证明谱分解定理——实对称矩阵可以正交对角化,然后你说的这些结论都是简单推论谱分解用归纳法很容易证,假定c是A的一个特征值,x是对应的单位特征向量,先验证c是实数,x取成实向量,然后取一个以

A,B为n阶实对称矩阵,且B是正定矩阵,证明:存在实可逆矩阵C使得C'AC和C'BC都是实对角矩阵.C'表示C的转置

B正定,存在可逆阵D,使得D’BD=E,记M=D‘AD是对称阵,故存在正交阵Q,使得Q'MQ是对角阵,令C=DQ,则C'AC=Q'D'ADQ=Q'MQ是对角阵,C'BC=Q'D'BDQ=Q'EQ=E是

已知a.b为异面直线,求证a.b分别存在平面α和β,且α//β

做一条直线的平行线与另外一条相交的辅助线很简单的

实对称矩阵A,B证明:AB=BA 存在可逆矩阵Q使得Q-1AQ和Q-1BQ同时是对角形

如果AB=BA,根据对称矩阵定义有一下两式,A=A的转置,B=B的转置,二式相乘结合,AB=BA,(AB)的转置等于B的转置乘A的转置,代换即可得出结论如果Q-1AQ和Q-1BQ同时是对角形,Q可逆,

希望会做的,回答我.1、已知:如图,x⊥y,垂足为O,点A和B关于y对称,点B和点C关于X对称,求证:①OA=OC; ②

因为点A和B关于y对称,点B和点C关于X对称,所以点A点C原点对称,所以:①OA=OC;  ②A 、O 、C三点在一条直线上.作AE⊥BC,△ABE全等于△AC

设A、B均为N阶实对称正定矩阵,证明:如果A—B正定,则B的逆阵减去A的逆阵正定.

任取非零向量α=(α1,α2,...αn),存在非零向量β=(β1,β2...βn),使得α'β=I,则有β'α=I因为A-B正定,则有α(A-B)α'>0,则αAα'>αBα'由A,B正定得A逆,B

设A,B均为n阶实对称矩阵,证明:A与B相似

因为A,B都是实对称矩阵,故他们都可以对角化.B他们有相同的特征值他们的特征多项式相同右边.

证明一个N阶实对称矩阵A是正定的当且仅当存在可逆实对称矩阵B,满足A=B*B

若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上

设A,B为实对称矩阵,且B正定,则存在S及对称矩阵D,使得

先对B做Cholesky分解B=L*L^T,然后对L^{-1}AL^{-T}做谱分解L^{-1}AL^{-T}=QDQ^T,S=LQ即可.

设A为实对称矩阵,且A正交相似于B,证明B为实对称矩阵.

由已知,存在正交矩阵Q使得Q^TAQ=B因为A是对称矩阵所以A^T=A所以B^T=(Q^TAQ)^T=Q^TA^T(Q^T)^T=Q^TAQ=B所以B为对称矩阵.又因为A为实矩阵,则其特征值都是实数,