高等代数(线性代数)设A为n阶实对称矩阵,证明:存在唯一n阶实对称矩阵B使得A=B的三次方
高等代数(线性代数)设A为n阶实对称矩阵,证明:存在唯一n阶实对称矩阵B使得A=B的三次方
线性代数证明题.设B为任一n阶方阵,A为n阶实对称矩阵,证明BтAB为对称矩阵.
高等代数 设A为n阶实反对称矩阵 求证矩阵 A^2为实对称矩阵
设B为任一n阶方阵,A为n阶实对称矩阵,证明(B)TAB为对称矩阵*(注T在B的上方)
设A是n阶实对称证明a可逆的充分必要条件是存在n阶实矩阵b使得AB+B转置A是正定
设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵
设n阶矩阵A对称正定,n阶矩阵B为对称矩阵,证明存在合同变换矩阵P,使得P'AP与P'BP均为对角矩阵
设A为N阶实矩阵,且有N个正交的特征向量,证明:1A为实对称矩阵;2存在实数k及实对称矩阵B,A+kE=B^2
设A,B均为n阶实对称矩阵,证明:A与B相似
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵
关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为
设A,B为n阶矩阵,且A为对称矩阵,证明B^TAB也是对称矩阵