微分方程y f(x)y=f(x)f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:06:44
由方程F(x,y,t)=0,两边对x求导:ðF/ðx+(ðF/ðy)(dy/dx)+(ðF/ðt)(dt/dx)=0;即F'x+F'y*(d
dz/dx=y(yf1'+2f2')dz/dy=f(xy,2x+y)++y(xf1'+f2')da/dxdy=(yf1'+2f2')+y【f1'+y(xf1'+f2')+2(xf1'+f2')】=2y
由于在x=1处可导,所以【f(1+t)-f(1)】/t当t趋于0是极限存在等于f'(1);对于任意点x>0,f(x+t)=f{(1+t/x)x}=xf(1+t/x)+(1+t/x)f(x)=f(x)+
第1道,设y'=u,则u'(1+e^x)=-u,解du/u=-dx/(1+e^x)得lnu=ln(1+e^x)-x+C1,即u=e^C1(1+e^x)/e^x=e^(C1-x)+e^C1.所以y=∫u
复合函数求偏导啊g对x一阶导数,-f'(y/x)*y/x^2+f'(x/y)g对y一阶导数,f'(y/x)/x+f(x/y)-f'(x/y)/y所以g对x二阶偏导,f''(y/x)*y^2/x^4+2
对任意x,y,恒有f(xy)=yf(x)+f(y),则令y=1代入得:f(x)=f(x)+f(1)得到:f(1)=0对f(xy)=yf(x)+f(y),两边求关于y的导,可得:xf'(xy)=f(x)
设f(x)=ax^2+bx+c,f(0)=c=1,则f(x)=ax^2+bx+1f(x+1)=a(x+1)^2+b(x+1)+1=ax^2+(2a+b)x+a+b+1f(x+1)-f(x)=2ax+a
先证明 若a>b>c>1,且a,b,c成等差数列,求证f(a)f(c)0,则a=b+d,c=b-d再设a=b^p,c=b^q,由a>b>c>1知p,q都是正数,且p!=q f(a)f(c)=f(b^p
定义在R上的函数f(x)满足对任意实数x,y均有xf(y)+yf(x)=(x+y)f(x)f(y)求f(x)直接令y=x则有:xf(x)+xf(x)=2xf(x)^2即2xf(x)=2xf(x)^2x
y=f(x)[0+无穷]上是增函数,f(xy)=xf(y)+yf(x),令x=1,y=1f(1)=f(1)+f(1)f(1)=0f(-xy)=xf(y)+yf(x)=-xf(y)-yf(x)=-f(x
对任意的x,y∈R都满足f(xy)=xf(y)+yf(x)令x=y=1得f(1)=f(1)+f(1)所以f(1)=0令x=y=-1,得f(1)=-f(-1)-f(-1)=0,所以f(-1)=0,令y=
令g(x)=f(x)-xg(xy)+xy=x(g(y)+y)+y(g(x)+x)-xyg(xy)=xg(y)+yg(x)令x=0,g(0)=yg(0),g(0)=0若存在|a|>=1使得g(a)不等于
挺好的题f(xy)=xf(y)+yf(x)---(1)设y=c=常量则:f(cx)=cf(x)+f(c)x两边求导数f'(cx)*c=cf'(x)+f(c)cf'(cx)-cf'(x)=f(c)此式对
第一题,令y=1有f(x+1)=x+f(x)+2x,故f(x+1)-f(x)=3x.由递推公式的f(x)=3/2的x(x-1)+1第二题,则必有第3项为1第3题是不是有问题.Sn=an''-an吗?再
(1)f(x)=f(0)+f(x)f(0)=0f(-x)=f(0)-f(x)=-f(x)=>为奇函数对于x10f(x2-x1)
这个可以是线性的也可以是非线性的,由f(x,y)的具体形式决定
这个叫欧拉公式(顺便说一下,你那个式子右边的t应该是少了个n次方),证明可以两边对t求偏导再令t=1得到,只要你会基本的微积分的话……
就x,y,y'构成的函数
x+z=yf(x²-z²)1+∂z/∂x=yf’(x²-z²)(2x-2z(∂z/∂x))∂z/