已知四边形ABCD是正方形,M为线段BC上的一点,CN为角DCE的平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:03:41
∵ABCD是矩形∴∠ABC=∠BCD=∠CDA=∠DAB=90°AB=CD,BC=AD∴ABCD是矩形的外角也是90°∴矩形ABCD的外角平分线,把外角平分成两个45°角∴△ABE、△BCF、△CBG
① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2  
解题思路:利用等腰三角形性质解题过程:见附件最终答案:略
由AO=BO=CO=DO,AC⊥BD根据三角形全等,可得AB=CD,AD=BC,所以四边形ABCD是平行四边形(两组对边分别相等)又因为AC=BD,AC⊥BD,所以平行四边形ABCD是正方形(对角线垂
证明:因为AC=BD(平行四边形定义)AM=BM(已知)CM=DM(已知)所以△ACM≌△BDM所以∠A=∠D又因为平行四边形邻角互补所以∠A∠B为直角所以平行四边形ABCD为矩形你是学生吧,题目很简
本题有结论:∠CAE=30°.理由:∵ABCD是正方形,∴OB=1/2AC,OB⊥AC,∵ABFC是菱形,∴AE=AC,AC∥BF,∵EH⊥AC,∴四边形OBEH是矩形,∴EH=OB,∴tan∠EAH
在△DAF和△ABE中AD=AB∠DAF=∠ABEAF=BE所以△DAF全等于△ABE所以∠ADF=∠BAE,BE=AF因为∠DAH+∠BAE=90°所以∠ADF+∠DAH=90°即∠DHA=90°C
经典的小学奥数燕尾定理题目连接AC,BO由同底等高,得:AMC=BMC,AMO=BMO得ACO=BCO同理ACO=OAB因此ACO是ABC的1/3,所求四边形是ABC的2/3ABC是正方形的一半所求四
sb垂直于平面ABCD且SB=AB=2因此SA=2倍更号2同理SC=2倍更号2AC是正方形对角线=2倍更号2因此SAC是等边三角形O是AC中点因此SO垂直于AC即AC垂直SO.BO=二分之一的BD=更
在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup
利用勾股定理和正方形面积公式,容易推出,图中所有正方形的面积之和恰是最底下那个正方形面积的3倍,所求面积为为3*7^2=147
延长CN交BM于E点;易证△ABM≌△BCN,得BM=CN且∠ABM=∠BCN,又因∠ABM+∠EBC=90度,所以∠BCE+∠EBC=90度,所以BM⊥CN.原命题得证.
在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup
证明:∵四边形ABCD是平行四边形∴AD//BC∴∠2=∠BCA∵∠1=∠2∴∠1=∠BCA∴AB=BC∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)∵∠BAD=∠1+∠2=45°+45°=90
延长DC,AF交于N,则三个三角形NCF,ABF,DAE都全等,得角AME=BAF,DC=CN,因角ADE+AED=90度,所以角BAF+AED=90度,角AME=90度=DMN,CM是斜边上中线,所
如图O是△ABC的重心,OT/TB=1/3 DO/DB=﹙3+1﹚/﹙3+3﹚=2/3四边形AOCD和四边形ABCD的面积之比=DO∶DB=2∶3
2/3连接OBS△AMO=S△BMO=S△BON=S△CON
1.SA⊥ABCD,MD在ABCD上的投影为ADAD⊥CD,∴MD⊥CD∠MDA即为二面角M-DC-B的平面角MA=4,AD=6tan∠MDA=4/6=2/3∠MDA=arctan2/32.SA⊥平面