已知函数f(x)=ax b,x小于等于0,log c (x 1 9),x>0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:16:50
已知函数f(x)=ax b,x小于等于0,log c (x 1 9),x>0
已知函数f(x)=-x+3-3a(x

当x0且a≤2/3则:0

已知函数f(x)=x

当x≥0时f(x)=x2+4x,可知f(x)在[0,+∞)上递增,当x<0时f(x)=4x-x2,可判断f(x)在(-∞,0)上递增,从而函数f(x)在R上单调递增由f(2-a2)>f(a),得2-a

已知函数f(x)=2x+1,x>=0;f(x)=|x|,x

-3或者1再问:求详解·,谢谢再答:这是分段函数啊。。当X>=0时,FX=2X+1。。然后你把2X0+1=3带入,求出X0=1当X

高一函数小题已知:af(x)+f(1/x)=ax(a≠±1).求f(x)

af(x)+f(1/x)=ax(1)令x=1/x则af(1/x)+f(x)=a/x(2)(1)*a-(2)a^2f(x)+af(1/x)-af(1/x)-f(x)=a^2x-a/x=(a^2x^2-a

已知函数f(x)的导函数f’(x)是一次函数,且x^2f'(x) - (2x - 1)f(x)=1,求函数f(x)

设f'(x)=2kx+bf(x)=kx^2+bx+c则x^2f'(x)-(2x-1)f(x)=2kx^3+bx^2-[2kx^3+(2b-k)x^2+(2c-b)x-c]=(k-b)x^2+(b-2c

已知函数f(x)=分段函数:-x+1,x

分段函数分段讨论当X

已知向量a=(√3,cosωx),b=(sinωx,1)(ω>0)函数f(x)=aXb,且最小正周期为4π,求ω

f(x)=a*b=√3sin(ωx)+cos(ωx)=2sin(ωx+π/6),最小正周期为T=2π/ω=4π,所以ω=1/2.

已知向量a=(√3,cosωx),b=(sinωx,1)(ω>0)函数f(x)=aXb,且最小正周期

已知向量a=(√3,cosωx),b=(sinωx,1)(ω>0)函数f(x)=aXb,且最小正周期为4π.1.设α,β∈[π/2,π],f(2α-π/3)=6/5,f(2β+2π/3)=-24/13

已知函数f(x)

解题思路:函数性质解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph

文科数学三角函数 1.已知:a=(2cosx,sinx),b=(√3cosx,2cosx).设函数f(x)-axb-√3

1(1)f(x)=a●b-√3=2√3cos²x+2sinxcosx-√3=√3(1+cos2x)+sin2x-√3=sin2x+√3cos2x=2(1/2*sin2x+√3/2*cos2x

已知函数f(x)=x^2+2x+a,g(x)=f(x)/x.

g(x)=f(x)/x=x+2+a/x=x+a/x+2≤-2*2+2=-2,当x=-2时等号成立,最大值-2.当a>0时,g(x)>0在[1,+∞),恒成立(证略)当a=0时,g(x)=x+2在[1,

已知函数f(x)=xlnx,则f(x)

f(x)对x求导得df(x)/dx=lnx+1df(x)/dx>0有x>e分之1,原函数在这个区间单增df(x)/dx

已知向量a=(sinx/3,cosx/3),b=(cosx/3,根号3cosx/3),函数f(x)=aXb

f(x)=sin((2x+pi)/3)+sqrt(3)/2对应的减区间即可求得b^2=a^2+c^2-2accos(x)a^2+c^2-ac=2accos(x)cosx>0a^2+c^2-ac>=ac

已知a=(sinx,根号三cosx)b=(cosx,cosx)f(x)=axb,求函数的f(x)周期及增区间

结果及过程如下图所示:不明白的话给我留言

已知二次函数f(x)=x^2+x,若不等式F(-x)+f(x)

(1)由条件f(-x)+f(x)=x^2+x+x^2-x=2x^2≤2|x|→x^2-|x|≤0→|x|^2-|x|≤0→|x|(|x|-1)≤0→0=0,两根之积为-5,显然,该方程有两根,且两根异

已知函数f(x)=ax(x

由题设[f(x1)-f(x2)]/(x1-x2)<0.易知,在R上,函数f(x)递减,一方面,当x<0时,f(x)=a^x递减,∴0<a<1,另一方面,当x≥0时,函数f(x)=(a-3)x+4a也递

已知函数f(x)= x-x^2,x

x=5时,f(x)=f(x-2)从而任何x>=5的值都是化成xf(8)=f(8-2)=f(6)=f(6-2)=f(4)=4-4^2=-12再问:�Ҳ����װ�f8Ϊʲô����f8-2再答:����

已知函数f(x)=x+lgx

因为F(x)在(1,10)上为连续函数设G(x)=F(x)—3,故G(x)在(1,10)上也为连续函数G(1)=-2,G(10)=8,G(1)0,故在(1,10)中存在m令G(m)=0G(m)=0,即