如图.直线l1∥l2,AB⊥于点O,BC交l2于点E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:12:06
(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同理:∠1+∠2=∠3;(3)同理:∠1-
答案:∠2=∠1+∠3证明:从P点作L1、L2的平行线L3,交CD于点O则:∠2=∠CPO+∠DPO∵L1∥L2∥L3∴∠1=∠CPO,∠3=∠DPO∴∠2=∠1+∠3(2)如果点P在A,B两点之间运
因L1‖L2‖L3,所以AD‖BE‖CF,ACFD为梯形,因此AB:DE=BC:EF
证明:(1)连接BE.∵∠ECF=∠ABC,∠ECF+∠BCE+∠BCA=∠ABC+∠BAC+∠BCA=180°,∴∠BCE=∠BAC;∵∠BDE=∠BAC=α=90°,∴B、E、D、C四点共圆,∴∠
过点B作BD∥l1,则BD∥l2,∴∠ABD=∠AOF=90°,∠1=∠EBD=43°,∴∠2=∠ABD+∠EBD=133°.故答案为:133.
(1)∠1+∠2=∠3由P点做l5//l1,因为l1//l2,由平行线的传递性可以知道,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以l2//l5设l5把∠3分成∠4和∠5(∠4在l5
延长AB角L2与点F∵l1∥l2AB⊥l1∴AB⊥L2∴∠BFE=90°∵∠A=45°∴∠2=90°+45°=135°
(1)作PE平行l1,l2所以∠1=∠CPE,∠2=∠EPD因为∠3=∠CPE+∠EPD所以∠3=∠1+∠2(2)不发生变化(3)①当P点在A的上方时,作PF平行l1,l2所以∠1=∠FPC,∠FPD
AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=∠CQB=∠BMA=∠AND=∠DPC=90°∵∠PCD+∠QCB=90°∠PCD+∠PDC=90°∴∠QAB=∠PDC∴直角△PCD≌
如图所示,建立直角坐标系.∵AB=2,∴B(2,0).设C(c,c),P(x,x).∵CD=λAB,∴AD=AC+λAB=(c+2λ,c).又PB=(2-x,-x).∴2PB+PD=(c-3x+2λ+
1,设PCD=∠1,∠PDC=∠2;那么∠ACP+∠1+∠2+∠PDB=180°.又因为∠1+∠2+∠CPD=180°,得∠ACP+∠PDB=∠CPD.2,P在AB两点之间运动,关系不会发生变化.3,
证明:连接AF,交L2于G点,连接BG、GE,可知BG//CF,GE//AD在∆ACF中,BG//CF即AB/BC=AG/GF在∆ADF中,GE//AD即DE/EF=AG/GF
过B做L1的平行线,易知角2=110°,
∠2=90°+30°=120°再问:要过程再答:∵AB⊥L1,∴∠AOF=90°做BD∥L1∴∠ABD=90°∵L1∥L2∴BD∥L2∴∠1=∠DBC=30°∴∠2=∠ABD+∠DBC=90°+30°
(1)如图,过点P做AC的平行线PO,∵AC∥PO,∴∠β=∠CPO,又∵AC∥BD,∴PO∥BD,∴∠α=∠DPO,∴∠α+∠β=∠γ.(2)①P在A点左边时,∠α-∠β=∠γ;②P在B点右边时,∠
(1)∠1+∠2=∠3.∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3.(2)①过A点作AF∥BD,则AF∥BD∥CE,
(1)、∠2=∠1+∠3(方法是过P作直线l∥l1,则l∥l1∥l2,l将∠2分成两个角,其中一个等于∠1,另一个等于∠3)(2)、点P在A、B两点之间运动时,∠1、∠2、∠3之间的关系不会发生变化.
(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同理:∠1+∠2=∠3;(3)同理:∠1-
(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线
延长DP交l1于点E∠α+∠β=∠γ因为l1∥l2所以∠1=∠β因为∠CPD是△PCE的外角所以∠CPD=∠1+∠β所以:∠α+∠β=∠γ