已知向量a=(√3,cosωx),b=(sinωx,1)(ω>0)函数f(x)=aXb,且最小正周期
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 10:37:21
已知向量a=(√3,cosωx),b=(sinωx,1)(ω>0)函数f(x)=aXb,且最小正周期
为4π.1.设α,β∈[π/2,π],f(2α-π/3)=6/5,f(2β+2π/3)=-24/13,求sin(α+β)的值
为4π.1.设α,β∈[π/2,π],f(2α-π/3)=6/5,f(2β+2π/3)=-24/13,求sin(α+β)的值
已知向量a=(√3,cosωx),b=(sinωx,1)(ω>0)函数f(x)=aXb,且最小正周期为4π.
1.设α,β∈[π/2,π],f(2α-π/3)=6/5,f(2β+2π/3)=-24/13,求sin(α+β)的值
解析:∵向量a=(√3,cosωx),b=(sinωx,1)(ω>0)
∴函数f(x)=a·b=√3sinωx+ cosωx=2sin(ωx+π/6)
∵最小正周期为4π
∴f(x)=2sin(1/2x+π/6)
设α,β∈[π/2,π],
f(2α-π/3)= 2sin(α)=6/5==>sinα=3/5==>cosα=-4/5,
f(2β+2π/3)=2sin(β+π/2)=-24/13==>cosβ=-12/13==>sinβ=5/13
sin(α+β)=sinαcosβ+cosαsinβ=-36/65-20/65=-56/65
1.设α,β∈[π/2,π],f(2α-π/3)=6/5,f(2β+2π/3)=-24/13,求sin(α+β)的值
解析:∵向量a=(√3,cosωx),b=(sinωx,1)(ω>0)
∴函数f(x)=a·b=√3sinωx+ cosωx=2sin(ωx+π/6)
∵最小正周期为4π
∴f(x)=2sin(1/2x+π/6)
设α,β∈[π/2,π],
f(2α-π/3)= 2sin(α)=6/5==>sinα=3/5==>cosα=-4/5,
f(2β+2π/3)=2sin(β+π/2)=-24/13==>cosβ=-12/13==>sinβ=5/13
sin(α+β)=sinαcosβ+cosαsinβ=-36/65-20/65=-56/65
已知向量a=(√3,cosωx),b=(sinωx,1)(ω>0)函数f(x)=aXb,且最小正周期
已知向量a=(√3,cosωx),b=(sinωx,1)(ω>0)函数f(x)=aXb,且最小正周期为4π,求ω
已知向量a=(3,cosωx),b=(sinωx,1)(ω>0),函数f(x)=a•b,且最小正周期为4π.
已知向量a=(3,cosωx),b=(sinωx,1),函数f(x)=a•b,且最小正周期为4π.
已知向量a=(2cos^2x,根号3),b=(1,sin2x),函数f(x)最小正周期
已知函数f(x)=√3sin(wx+φ)+cos(wx+φ)(|φ|0)的最小正周期为π,且f(-x)=f(x)
已知函数f(x)=−3sin2ωx+2sinωx•cosωx+3cos2ωx,其中ω>0,且f(x)的最小正周期为π.
已知函数f(x)=sin平方(x)+(√3)sin(x)cos(x)+2cos平方(x)求函数f(x)的最小正周期和单调
已知函数f(x)=3sinωx•cosωx-cos2ωx,(ω>0)的最小正周期T=π2.
已知函数f(x)=sin(π-ωx)cosωx+cos的平方ωx(ω>0)的最小正周期为π.
已知函数f(x)=√3sinωx×cosωx-cos²ωx ω>0的最小正周期为π 1 求ω的值及函数的单调递
■■■急!■■■已知函数f(x)=a*(b-a),其中向量a=(cosωx,0),b=(√3sinωx,10),且ω为正