实方阵特征值为实数,特征向量一定为实数吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:53:12
实方阵特征值为实数,特征向量一定为实数吗
求方阵A= 的特征值及特征向量.

由于A为对称矩阵,故存在正交矩阵U使得U^TAU=diag{a1,a2,a3,a4}.其中a1,a2,a3,a4为A的特征值.又因为A的秩为1,故a1,a2,a3,a4中只有一个不为0,另外三个都为0

一个方阵的特征值与特征向量是否一一对应

不是一一对应若α是A的属于特征值λ的特征向量,则kα(k≠0)也是A的属于特征值λ的特征向量特征向量只能属于一个特征值而特征值有无穷多特征向量

设3阶方阵A有特征值-1,1,1对应的特征向量分别为(1,-1,1)^T,(1,0,-1)^T,(1,2,-4)^T,求

令P=111-1021-1-4则P^-1AP=diag(-1,1,1)所以A=Pdiag(-1,1,1)P^-1=-3-6-4474-4-6-3再问:那A的100次怎么办..再答:哈忘了是求A^100

如何在已知方阵的特征值和特征向量的情况下求方阵?

这其实是我们常做的矩阵对角化的逆运算,P-1AP=B,我们平常已知A,求P和B,现在已知P和B,求A,A=PBP-1,其中B是特征值组成的对角阵,P的列向量就是特征值对应的特征向量,要特别注意这里的对

线性代数:在证明实对称矩阵的特征值一定为实数时,特征向量x是实数吗?详见补充

xi是复数的话,|xi|表示的是复数xi的模,等式不还是成立的嘛再问:如果xi=a-bi那么xi的共轭=a+bi,xi与xi的共轭的乘积=a2+2abi+b2而|xi|2=a2+b2,对吗?再答:xi

设A为3阶方阵,x1,x2,x3是A的三个不同特征值,对应特征向量分别为a1,a2,a3,令b=a1+a2+a3.

首先要注意a1,a2,a3线性无关,然后(b,Ab,A^2b)=(a1,a2,a3)*V,其中V=1x1x1^21x2x2^21x3x3^2是Vandermonde矩阵,由于x1,x2,x3互不相同,

(矩阵的特征值与特征向量)已知3阶方阵特征值为2,-1,0.求矩阵B=2A^3-5A^2+3E的特征值与丨B丨

给你一个思路,矩阵论的东西很多都忘记了,所以不能说的太详细,上面的那个式子分解成(2A+E)*(A-2E),然后再做进一步分析

求方阵的特征值及特征值对应的特征向量

设a,用-2-a,2-a,3-a,分别代替原方阵中-2,2,3,令新方阵的行列式=0,即A-aE取行列式令为零.解得a=-1或2,即特征值为-1和2,分别把-1和2带入(A-aE)x=0,解出齐次线性

设三阶方阵A的一个特征值为1/9,对应的特征向量a为(1,1,1)^T,求方阵A9个元素之和.

由已知,A(1,1,1)^T=(1/9)(1,1,1)^T所以A的每行元素的和都是1/9所以A的9个元素之和等于3*(1/9)=1/3.

知道特征向量和特征值如何求方阵

例如A\xi_1=\lambda_1\xi_1,A\xi_2=\lambda_2\xi_2,A\xi_3=\lambda_3\xi_3记P=(\xi_1\xi_2\xi_3),则A=Pdiag(\la

线性代数题目A为3阶实对称矩阵,属于特征值1的特征向量为(1,-1,1)还有另外两个特征值2,-3.求另外两个特征向量.

方法:实对称矩阵的属于不同特征值的特征向量正交设X=(x1,x2,x3)^T为A的属于特征值2,-3的特征向量.则有x1-x2+x3=0其基础解系为:(1,1,0)^T,(1,0,-1)^T此即为A的

由方阵A的特征向量及特征值如何求原方阵A?

设A的特征值为a1,a2,...,an,对应的特征向量为p1,p2,...,pn,令P=(p1,p2,...,pn)则A=Pdiag(a1,a2,...,an)P^-1才看到你这题目

线性代数:若三阶方阵A的三个特征值为1,2,-3,属于特征值1的特征向量为a1=(1,1,1)^T,属于特征值2的特征向

首先,一定不是属于3的特征向量,因为不同特征值对应的特征向量正交其次,Aα1=α1,Aα2=2α2,所以A(-α1-α2)=-α1-2α2,显然-α1-2α2与-α1-α2不共线(否则与α1、α2线性

线性代数。方阵的特征值和特征向量

是的,只能你用初等行变换基础解系是看整个行最简矩阵的所有的例题当然都是用的同样的方法哦

设A为3阶方阵,A的3个特征值分别为1,-1,2,对应的特征向量分别为α1,α2,α3,

A的特征值为1,-1,2所以|A|=1*(-1)*2=-2所以A*的特征值为(|A|/λ):-2,2,-1所以(B)正确.

求方阵A=[1,2,2;2,1,2;2,2,1]的实特征值和特征向量

λ1=5,λ2=λ3=-15的特征向量[1,1,1]^T-1的特征向量[1,-1,0]^T和[1,0,-1]^T

设A是3阶实对称矩阵,b1 b2是属于a的不同特征值的特征向量,则3阶方阵B=(b1,b2,3b3)的秩r(B)为?b1

由于属于不同特征值的特征向量线性无关所以β1,β2是B的列向量组的极大无关组所以r(B)=2β1^Tβ2=0--实对称矩阵属于不同特征值的特征向量正交