设A是3阶实对称矩阵,b1 b2是属于a的不同特征值的特征向量,则3阶方阵B=(b1,b2,3b3)的秩r(B)为?b1
设A是3阶实对称矩阵,b1 b2是属于a的不同特征值的特征向量,则3阶方阵B=(b1,b2,3b3)的秩r(B)为?b1
设B1是n阶矩阵A属于特征值a1的特征向 量,B2,B3是A属于特征值a2的线性无关 特征向量a1不等于a2
设B1,B2,B3是3维向量空间R^3的一组基,则由基B1,B2,B3到B1+B3,B1+B2,B2+B3的过度矩阵为
解答以下线性代数题设A为三阶矩阵,有三个不同的特征a1,a2,a3,b1,b2,b3依次是属于特征值a1,a2,a3的特
行列式的解法请帮忙写出这个题的具体解法:设A是3阶矩阵,b1,b2,b3是线性无关的3维向量组,已知Ab1=b1 b2,
已知a向量(a1,a2,a3)b向量(b1,b2,b3)则a1/b1=a2/b2=a3/b3是a向量//b向量的 A充.
已知A为6阶矩阵,|A=|(B1,B2,...,B6)|=2,B=(B2,B3...,B6,B1)C=(B6,B1,B2
...若a=(a1,a2,a3),b=(b1,b2,b3)则a1/b1=a2/b2=a3/b3是a//b的()
设C为3阶非零方阵,且C的平方=2,证明:存在A=(a1 a2 a3),A是列向量!B=(b1 b2 b3)使得C=AB
线性代数特征值关于b的多项式F(b)=|A-bE|=0,A是n阶方阵,证明:(1):b1+b2+……+bn=a11+a2
设b1,b2,b3是齐次线性方程组Ax=0的三个解,则A(b1 + 2b2 - 5b3)等于?
设3×2矩阵A=(a1,a2),B=(b1,b2),其中a1,a2,b1,b2是3维列向量,若a1,a2