如图正方形ABCD中,e为bd上一点,f为bc上一点,ef=ec
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 17:18:00
连结CP在正方形ABCD中,BD是对角线∴AB=BC,∠ABP=∠CBP=45°,∠C=90°∵BP=BP∴⊿ABP≌⊿CBP(SAS)∴AP=CP∵PE⊥DC于E,PF⊥BC于F∴∠C=∠PFC=∠
把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,
好评给我把再答:再问:答案拿来再答:发了再问:采纳了
延长AF交BC的延长线于H,设AF、BE交于G由正方形和中点的条件得:EF/CF=DE/BC=1/2所以AE/CH=EF/CF=1/2所以CH=BC所以AE=BH/2所以EG/GB=AE/BH=1/4
证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB-∠E
2、证明:将△ABE绕点A旋转,使AB与AD重合,旋转后点E的对应点为I,过点H作HP⊥BC于P,HQ⊥AB于Q,过点G作GK⊥CD交DC延长线于K∵正方形ABCD∴AD=AB=CD,∠BAD=∠AD
s=1/6S△DEF=S正方形ABCD-S△DCE-S△ABE-S△DAF因为△BEF∽△DAF且BE:AD=1:2,所以△DAF的高为2/3所以S△DEF=1X1-1/2x1x0.5-1/2x1x0
(1)在Rt△FCD中,∵G为DF的中点,∴CG=1/2FD.同理,在Rt△DEF中,EG=FD.∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与E
下面是我自己想的,不知道能不能做对,你自己再看看哈:延长AE到点C,交GF于点P则AC为正方形对角线又因为E为ACBD交点所以点E为HC中点所以BG=GC又因为角EFC=角C=角EGC=90度所以角G
FG=EC,ABE-CBE全等,EC=AE,AE=FG
如图,AD中点O即半圆的圆心,作辅助线,OE、OC、OF因为E在半圆上,所以OE=OD=2E也在四分之一圆上,所以EC=DC=4加上公共边OC马上我们就可以知道△ODE和△OCE是全等的直角三角形(S
∵PA⊥平面ABCD∴PA⊥BD∵底面ABCD是正方形∴BD⊥AC∴BD⊥平面ACP∵EF∈平面ACP∴BD⊥EF
证明:(1)连接AC,在△CPA中,因为E,F分别为PC,BD的中点,所以EF∥PA.而PA⊂平面PAD,EF⊄平面PAD,所以直线EF∥平面PAD.(2)因为平面PAD⊥平面ABCD,平面PAD∩平
设AF与BE相交于M,DA=DC,∠ADF=∠CDF=45°,FD=FD==>△DAF≌△DCF==>∠DAF=∠DCFAE=ED,∠BAE=∠CDE=90°,AB=DC==>△ABE≌△DCE==>
提示:过E向CD作垂线,垂足为F.三角形DEF是等腰直角三角形.记AC和BD的交点为O,则OE=EF.然后求出OE和ED的比例,求出OD的长度,DE长度即可求.
设BE、AF交于O在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),∴△AFD和△BFD全等,则∠DAF=∠DCF在△AEB和△DEC中,AE=DE(
证明:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+
(1)证明:连接AC,则F是AC的中点,E为PC的中点,所以在△CPA中,EF∥PA,且PA⊂平面PAD,EF⊄平面PAD,∴EF∥平面PAD;(2)证明:因为平面PAD⊥平面ABCD,平面PAD∩平
前天刚做过的题目,一起分享一下吧!答案不错吧!给你推荐一些学习资源吧!在百度视频搜“智能家教 学习方法与家庭教育新理念”,40分钟,介绍了学习所必须遵循的规律、家庭教育原则、学生在学习中和家
证明:(1)∵ABCD为正方形,∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,又DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCG;(2)∵ABCD为正方形,∴AD∥BE,∴∠DAG