如图圆o的直径ab=6∠abc=30度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:14:12
如图圆o的直径ab=6∠abc=30度
如图,△ABC内接于⊙O,AB是⊙O的不是直径的弦,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由.

连结AO并延长,交圆于A,E,连结AC,EC,则∠ACE=90°,∴∠EAC+∠AEC=90°,∵∠CAD=∠ABC,∴∠CAD+∠EAC=90°,∴直线AD与⊙O相切.

如图,△ABC内接于⊙O,AD是△ABC的高,AD的延长线交⊙O于点G,AE是⊙O的直径。(1)若AB=6,AC=5,A

解题思路:根据题意,由圆的性质和三角形全等的知识整理,分析可以求得解题过程:

已知:⊙O是△ABC的外接圆,AB为⊙O的直径,弦CD交AB于E,∠BCD=∠BAC.

证明:(1)连接AD,∵∠BCD=∠BAC,∠CBE=∠ABC,∴△CBE∽△ABC,∴∠BEC=∠BCA=90°,∴∠CBA=∠ECA,又∵∠D=∠ABC,∴∠D=∠ACD,∴AC=AD.(2)连接

圆O的直径AB=10,角ABC=30度,求BC的长

长为5以直径为边的圆内接三角形都是直角三角形bc是30度角的对边所以它是直角边的一半

如图三角形ABC内接于圆O,∠BAC=120°,AB=AC,BD为圆O的直径,AD=6,求DC长

因为三角形ABC中,角BAC=120度,且AB=AC,所以角ABC=角BCA=30度,所以角BDA=30度,又因为BD是圆的直径,所以角BAD=90度,再因为角BDA=角BCA=30度,而且AD=6,

1.已知,三角形ABC内接于圆O,AB是圆o的直径,∠CAD=∠ABC,判断直线AD与圆O的位置关系.

三角形ACB内接于圆O,易得角C=90°因为角C=90°所以角2+角3=90°因为角2=角CAD所以角3+角CAD=90°那么AD垂直于AB及AD为园O的切线再问:是第二题!!!!!!!再答:不好意思

已知AB是圆O的直径,C是圆O上的一点,过点C作圆O的切线,交AB的延长线于点D,∠ABC=70°,求∠D的度数

因为oc=ob所以∠ocb=obc=70又因为cd与圆o相切所以∠ocd=90所以∠bcd=90-70=20所以∠d=70-20=50

已知三角形ABC内接于圆O,角BAC=120度,AB=AC=6,求圆O的直径

∵∠BAC=120°且AB=AC=6且此三角形为正三角形∵△ABC内接于圆O∴连接AO∴AO⊥且平分BC∴AO=OC=BC∴BC=2*OC=2*6=12都参加工作好几年了,

如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60. (1)求⊙O的直径; (2)若D是AB延长线上谢谢了,

(1)∵AB是圆O的直径,°∴∠ACB=90°弦BC=2cm,∠ABC=60.∴⊙O的直径AB=2/cos60=2÷1/2=4(2)若D是AB延长线上一点,连结CD,当BD=BC=2cm时,CD与⊙O

已知,AB是圆O的直径,MN切圆O于点C,且∠BCN=38°,求∠ABC的度数

连接OC∵MN切圆O于C∴∠OCN=90∴∠OCB=∠OCN-∠BCN=90-38=52°∵OB=OC∴∠ABC=∠OCB=52°数学辅导团解答了你的提问,

如图所示,三角形ABC中AB=AC,以AC为直径的半圆O交AB,BC于D,E,连接DC、∠ACD=40°

(1)连接AE.则在半圆O中,AC是直径,那么角AEC=90度、ADC=90度;也就是说AE垂直BC因为AB=AC在等腰三角形ABC中,底边上的高也是底边的中垂线所以E是BC的中点.(2)直角三角形A

AB是圆O的直径,PA垂直于圆O所在的平面,C是圆上一点,∠ABC=30,PA=AB.

直线PC与平面ABC所成角=∠PCAAC=1/2ABPA=AB∠PAC=90所以tan∠PCA=2即直线PC与平面ABC所成角的正切值2希望能帮到你,祝学习进步O(∩_∩)O,也别忘了采纳!

如图,三角形ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,求BC的长

再问:为啥再答:再答:感觉可以就赞一下再问:连接后不对啊再答:怎么不对再问:再问:原图以已发过去了再答:再答:行了再答:嗯再答:收到答案没有

如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(  )

∵AB是⊙O的直径,∴∠ACB=90°;Rt△ABC中,∠ABC=30°,AB=4;∴AC=12AB=2.故选D.

已知△ABC三个顶点都在○O上,AD是△ABC的高,AB=7,AC=6,AD=4.2,求直径长

根据正弦定理:a/sinA=b/sinB=c/sinC=2R(其中ABC为内接三角形的角,abc是对应的边,R是外接圆半径),又因为三角形面积S=1/2sinAbc=1/2sinBac=1/2sinC

三角形ABC内接于圆O过点A作直线EF AB为直径则我们有角CAE=∠B反过来AB为直径∠CAE=∠B那么EF是圆O的切

EF是圆O的切线证明:∵AB是圆O的直径索要交ACB=90°∴∠B+∠BAC=90°∵∠EAC=∠B∴∠EAC+∠BAC=90°∴∠EAB=90°∴EF是圆O的切线再问:在平面直角坐标系中,圆M与x轴

如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F

(1)证明:连接AD、OD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴AD垂直平分BC,即DC=DB,∴OD为△BAC的中位线,∴OD∥AC,而DE⊥AC,∴OD⊥DE,∴DE是⊙

如图,AB是△ABC外接圆圆O的直径,D是AB延长线上一点,且BD=1/2AB,∠A=30°,

∵BD=AB/2,AB=2OB,∴BD=OB,∵AB是直径,∴〈ACB=90°,(半圆上圆周角是直角)∵〈A=30°,∴〈ABC=60°,∵OB=OC=R,∴△OBC是正△,∴BC=OB=OC,∴BC

如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切

解题思路:(1)连AD,由AB为直径,根据圆周角定理得推论得到∠ADB=90°,从而有∠C+∠EAD=90°,∠EDA+∠CDE=90°,而∠CAB=90°,根据切线的判定定理得到AC是⊙O的切线,而

已知在△ABC中,AB=AC,圆O为△ABC的外接圆,CD为圆O的直径,DM//AC交AB于M.

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B