如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:54:48
如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切线DE交AC于点E,DG⊥AB于点F,交⊙O于点G. (1)求证:E是AC的中点; (2)若AE=3,cos∠ACB=,求弦DG的长.
解题思路: (1)连AD,由AB为直径,根据圆周角定理得推论得到∠ADB=90°,从而有∠C+∠EAD=90°,∠EDA+∠CDE=90°,而∠CAB=90°,根据切线的判定定理得到AC是⊙O的切线,而DE与⊙O相切,根据切线长定理得ED=EA,则∠EDA=∠EAD,利用等角的余角相等可得到∠C=∠CDE,则ED=EC,即可得到EA=EC;
解题过程:
解题过程:
如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切
如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,过点D的切线交BC边于点E.
如图,在Rt△ABC中,角ACB=90°,以AC为直径的圆O与AB边交于点D,过点D作圆O的切线,交BC于点E
如图以rt△abc的直角边ab为直径作圆o,与斜边AC交于点D,E为BC边上中点,连接DE,求证:DE是圆O的切线,当∠
(2013•石景山区二模)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D作⊙O的切线交B
(2009•朝阳区二模)已知:如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切
已知,以Rt三角形ABC的直角边BC为直径作圆O,以RT三角形ABC的直角边AB为直径作圆O,与斜边AC交于点D
以RT三角形ABC的直角边AB为直径作圆O,与斜边AC交于点D,E为BC上中点,连接DE
如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.
(2014•昆都仑区一模)如图,在Rt△ABC中,∠C=90°,以边AC为直径作⊙O,与斜边AB交于点M,点N是边BC的
如图,已知在Rt△ABC中,∠C=90°,以AC为直径作圆O,交AB于D点,过点O作OE∥AB,交BC于E.
如图,在直角三角形ABC中,角ACB=90°,以AC为直角边的圆O与AB边交于点D,过点O作圆O的切线,交BC于点E,