如图任意四边形abcd中点e f g h

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:34:07
如图任意四边形abcd中点e f g h
如图.已知四边形ABCD中,EF,GH分别为AB,BC,CD,DA的中点.求证:EFGH为平行四边形.

在△ABC中,因为E.F分别是AB、BC的中点,即EF是△ABC的中位线,所以EF//AC,EF=1/2AC,同理,HG//AC,HG=1/2AC所以EF//HG,EF=HGEFGH为平行四边形

如图,在四边形ABCD中,AB=CD,E,F,G,H分别是AD,BC,BD,EF的中点.求证:GH垂直平分EF

∵E是AD的中点,G是BD的中点∴2EG=AB∵G是BD的中点,F是BC的中点∴2GF=CD∵AB=CD∴GE=GF∴△GEF是等腰三角形∵H是EF的中点∴根据等腰三角形三线合一得到GH⊥EF

如图,在四边形ABCD中AD=BC,E,F,G分别是AB,CD,AC的中点,H是EF的中点,求证GH⊥EF ,

证明:因为:F为CD中点,G为AC中点,所以:FG//AD且FG=1/2AD.因为:E为AB中点,G为AC中点,所以:EG//BC且EG=1/2BC.因为:AD=BC所以:FG=EG在三角形EFG中,

1.如图,在四边形ABCD中,AB=CD,E、F、G、H分别是AD、BC、BD、EF的中点.求证GH垂直平分EF.

123456789好难连EG,GF,因为E,G为DA,DB中点,所以EG平行且等于1/2AB同理F,G为BD,BC中点,所以GF平行且等于1/2DC因为AB=DC,所以EG=GF又因为H为等腰三角形G

如图,在任意四边形ABCD中,E,F分别是AD BC的中点.求证:向量AB+向量DC=2向量EF

向量EF=EA+AB+BF,向量EF=ED+DC+CF,因为E,F分别是ADBC的中点,所以向量EA+ED=0,向量BF+CF=0(向量大小相等,方向相反,和为0向量,你懂的)所以向量AB+向量DC=

数学难题已知,如图在四边形ABCD中,E,F分别是AB,CD的中点,求证EF

取BC中点M,连接EM、FM在三角形ABC中,EM为中位线,所以EM=1/2*AC同理可得FM=1/2*BD所以EM+FM=1/2*(AC+BD)在三角形EFM中,根三角形三边关系定理可得EF

四边形证明题、已知,如图、在平行四边形abcd中、ef分别是ab.cd的中点.若ad⊥bd.判断四边形debf的形状.说

四边形DEBF为菱形AD⊥BDAD‖BC所以BD⊥BC则△CBD,△ABD为直角三角形直角三角形斜边中线等于斜边一半所以DE=1/2AB=BEDF=1/2CD=BF而CD=AB所以DE=BE=BF=D

如图,已知E、F、G、H分别为四边形ABCD各边中点,连EF、FG、GH、HE得到四边形EFGH称为中点四边形.

(1)连ABCD的任一条对角线,如BD,由中位线可得EFGH一组对边平行且相等,所以EFGH为平行四边形(2)由第一问可知,EFGH为平行四边形,所以当AC、BD相等时,EFGH为菱形当AC、BD互相

如图,任意四边形ABCD中,E,F分别是AD,BC的中点,求证“”:EF=1/2(AB+DC).

以下字母皆为向量:EF=ED+DC+CFEF=EA+AB+BFso,(ED+DC+CF)+(EA+AB+BF)=2EFED+EA=0CF+BF=0soEF=1/2(AB+DC)

如图已知EF分别是平行四边形ABCD的边DC,AB的中点 求证 四边形AECF是平行四边形

证AE向量=FC向量(可以根据向量加法来做,AE=AD+DE=BC+FB=FC),所以,

如图,四边形ABCD是一个凹四边形,E,F,G,H分别是边AB,BC,CD,DA的中点,联结EF、FG、GH、HE

辅助线=>连接AC和BD三角形ABC中因为E,F是边AB,BC的中点所以EF//AC三角形ACD中因为G,H是边CD,DA的中点所以HG//AC所以EF//HG三角形ABD中因为E,H是边AB,DA的

已知,如图四边形ABCD中.EF分别是AB,CD的中点BD为对角线,AG‖DB交CB延长线于G 若四边形

例1、已知:如图,平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG//DB交CB的延长线于G,若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.解析:四边

如图,在四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,H是EF的中点,求证:GH垂直EF

证明:连接FG因为E、G、F分别是AB、CD、AC的中点,则2EG=BC,2FG=AD因为AD=BC所以EG=FG则三角形EFG是等腰三角形因为H是EF的中点所以GH是三角形底边的中线故GH垂直EF

如图 在平矩形ABCD中,EF分别是AB,CD的中点,求四边形AEFD是矩形

因为ABCD为矩形,EF分别是AB,CD的中点所以AE//DF且AE=DF所以AEFD为平心四边形又因为角A=90°所以AEFD为矩形

如图,EF分别是矩形ABCD的边AB,BC的中点,连CE,AF相交于G,则四边形BEGF与四边形ABCD等于 

…………这个答案应该是C吧你把△ABC先拿出来,其实G是重心楼主学过吗?就是三角形三条中线的交点啊,这里有一个性质,就那你这个图来说,CG是GE的两倍,AG是GF的两倍,还有一条你没画上但是同理,你将

如图,EF分别是矩形ABCD的边AB,BC的中点,连CE,AF相交于G,则四边形BEGF与四边形AB

如图所示,作补助线BG因为EF都是中点,所以三角形ABF和三角形CBE的面积同等.S1[四边形ABCD]=ABXBCS2[三角形ABF]=ABXBC/2/2=1/4ABXBCS3[三角形CBE]=BC

如图,依次连接任意四边形ABCD中点,得到四边形EFGH,证明四边形EFGH是平行四边形!过程!

顺次连接E、F、G、H因为AB、BC、CD、AD的中点分别是E、F、G、H,所以EF、GH分别是是三角形ABC和ADC的中位线根据中位线性质得:EF//AC,EF=AC/2,GH//AC,GH=AC/

如图四边形ABCD,点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE,得到四边形EFGH

证明:连接BD,∵点E、F、G、H分别是边AB、BC、CD、DA的中点.∴EH为△ABD的中位线,∴EH∥BD,EH=12BD.同理:FG∥BD,FG=12BD,∴EH∥FG,EH=FG∴四边形EFG

已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边

(1)四边形EFGH的形状是平行四边形.理由如下:如图,连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=12BD,同理FG∥BD,FG=12BD,∴EH∥FG,EH=FG,∴四边形EFGH

如图,已知在平行四边形ABCD中EF分别是BC、AD的中点,求证:四边形AECF是平行四边形

再问:△ABE≌△DFC()后面括号里填什么再答:边角边定理忘了怎么用字母表示了再问:��SAS��再答:Ӧ���ǵġ���