如图12,在圆心O中,AB是弦,直径CD垂直AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:54:20
连结OP∴∠OCP=∠OPC=∠DCP∴OP//CD∵CD⊥AB∴OP⊥AB∴∴P是弧AB中点
根据勾股定理由OA=13OE=5得AE=12又由小圆半径OC=√41OE=5得CE=4CD=2CE=8AC=AE-CE=12-4=8做题单位要记得加我这里嫌麻烦就不加了
2cm.连结AC,三角形ABC为直角三角形,∠ACB为直角,作圆O到AC的垂线为D,则OD与AC平行,因为AO=1/2AB,所以OD=1/2BC,因为BC=4cm,所以圆心到AC的距离为2cm.
相切的.依题三角形ABC为等腰三角形,则AO垂直于BC,所以三角形AOB和AOC及圆O关于AO对称,所以相切
1∵P与圆心O重合所以MP=PN=AP=PB所以(MP²+NP²)/AB²=(MP²+MP²)/(2MP)²=二分之一2作OC垂直MN于C所
OE=5OA=13可得AE=12OE=5连接OC且OC=41^(1/2)可得CE=4可得CD=8AC=8..不知道对不对啊~你这个图反正是画的不太好吧.小圆半径差不多是大圆的一半吧再问:OE=5连接O
解题思路:本题考查了垂径定理,即垂直于弦的直径必平分炫,再结合勾股定理即可解答出:两个圆的半径根号2和根号5.解题过程:最终答案:答案:根号5,根号2.
(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠
^2+(d/2)^2=R^2d^2/4=R^2-r^21/2π(d^2/4)=1/2πR^2-1/2πr^21/2π(d^2/4)=S所以S=πd^2/8
因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=
在直角△AOE中,AE=4cm,OE=3cm,根据勾股定理得到OA=5,则⊙O的半径是5cm.
连结OC、OD做OF⊥CD于F半径r=5又因为BE=3所以OE=2△OEF中角OFE=90°角OEC=60°所以OF=根号3所以DF^2=OD^2-OF^2=根号22CD=2根号22
过O做OO'垂直AB交A'B'于点O'由于AA'⊥AB,BB'⊥AB,OO'⊥AB所以AA'‖‖BB'‖OO'又O是AB中点所以O'是A'B'中点,OO'=(AA'+BB')/2=AB/2即O'是个不
--楼主……我记得没错的话……有条定理还是公理就是……过圆心的直径是圆上任意两点间最长的线段要证明的话……如下过C点做直径CE,连接DE,我们可得RT△CDE,由RT三角形斜边最长……我们可知AB=C
设正方形的边长为1,OD=x则有OC=1-x,OB=1+x三角形OBC中,由勾股定理有 OB^2=OC^2+BC^2所以 (1+x)^2=(1-x)^2+1^2得x=1/4所以OC
AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边
设两个同心圆圆心为O,大圆的弦AB切小圆于C,连结OB,OC则OC垂直AB,C为AB中点.所以,由勾股定理得:OB^2-OC^2=BC^2=(AB/2)^2==(4/2)^2=4所以,S环=S大圆-S
连接OC,OA∵AB是小圆O的切线∴OC⊥AB∴AC=BC=1/2AB=d/2(垂径定理)圆环面积S=πOA²-πOC²=π(OA²-OC²)∵OA²
(1)BC所在直线与小圆相切过O作OF⊥BC在直角△ACO和直角△OCF中,∠AC0=∠FCO,∴AO=FO又AO为半径,所以F在小圆上,所以直线BC外切于小圆(2)关系:BC=AD+AC在直角△AC
/>∵C是AB的中点∴OP⊥AB【垂径定理逆定理:平分弦(除直径外的弦)的直径垂直于弦】∵AP是⊙O的直径∴∠OAP=90°∵∠P=30°∴OP=2OA=4∵∠OAC=∠P=30°(同余角∠AOC)∴