如图,抛物线y=x平方 bx 四分之七
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:11:32
按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-
1)由已知得,a+b+c=09a+3b+c=0c=3解之得a=1b=-4c=3∴y=x2-4x+3;(2)∵D(7/2,M)是抛物线y=x²-4x+3上的点,∴M=5/4∴S△ABD=5/4
y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P
=1-3=-2-c=1x(-3)=-3,c=3所以该抛物线的解析式为y=-x^2-2x+3
我做了.不知道对否啊.凑合点吧.y=ax平方+bx+3与x轴交于点A(1,0)B(-3,0)将x=1和x-3分别带入得关于a,b二元一次次程a+b+3=09a3b+3=0解得:a=-1,b=-2带入原
1)由tan∠ABC=1C(0,-3);BC方程:y=x-3;y=0则x=3故B(3,0)代入抛物线方程得b=-2;2)取C关于x轴的对称点F,则F(3,0);PF=CP;故△CDP的周长=FP+PD
(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,
是二次函数压轴题,综合考查了二次函数的图象与性质,待定系数法,函数图象上点的坐标特征,平行四边形,平移变换,图形面积计算等知识点,有一定的难度.确实还是需要动点脑子的第一问中利用待定系数法求出抛物线解
解1)对称轴为x=2所以9/8*b=2b=16/9又AO=1所以A点坐标为(-1.0),该点在抛物线上代入得-4/9-16/9+c=0c=20/9所以y=-4/9x^2+16/9x+20/9y=-4/
(1)抛物线y=-x的平方+bx+c与x轴交于A(1,0),B(-3,0)两点,所以0=-1+b+c,0=-9-3b+c,解得b=-2,c=3,y=-x的平方-2x+3.(2)令抛物线中的x=0,则y
数学语言不好打字,这是答案和解析的网址.祝学习愉快咯~
解得:1.c=-2;2.b=5/2;方程式你会写了,最后一个还没算
(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组 9a+3
问题写的太乱,不太明白题目是什么……抛物线方程“四分之三”前是一个复号,和给出的图不一样了.直线“y=-4t分之三”是什么?第三问若角CBA不等于60度,需要分类讨论,QB=PB情况,QB=QP情况还
(1)y=-x^2+2x+3(3)y=-x^2+2x+3=4-(x-1)^2P(m,4-(m-1)^2)B(3,0),C(0,3)等腰三角形BPC以BC为底边,PB^2=PC^2PB^2=(m-3)^
1)过P作PQ⊥x轴,Q为垂足则Q点坐标为(3,0)|BQ|=5-3=2所以,|PQ|=√(PB^2-BQ^2)=√(20-4)=±4a>0,开口向上,所以,P在x轴下方,所以,P点坐标为:(3,-4
1)将A(1,0),B(-3,0)代入,得,-1+b+c=0,-9-3b+c=0,解得b=-2,c=3所以抛物线为y=-x²-2x+32)△ACQ的周长为CQ+AQ+AC,其中AC不变所以当
将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为