如图,抛物线C2栓:y2=8x与双曲线C2:x2 a2-y2 b2=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:21:10
如图,抛物线C2栓:y2=8x与双曲线C2:x2 a2-y2 b2=1
设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如

点A在准线l上其横坐标为-2代人直线AF的方程y=-√3(x-2)其纵坐标为4√3

已知椭圆C1:x2/a2+y2/b2=1(a>b>0)的右焦点与抛物线C2:y2=4x的焦点F重合

已知椭圆C1:x2/a2+y2/b2=1(a>b>0)的右焦点与抛物线C2:y2=4x的焦点F重合,抛物线焦点为(1,0),故椭圆两焦点为(-1,0)(1,0)把抛物线方程y^2=4x代入椭圆方程得:

如图,倾斜角为α的直线经过抛物线y2=8x的焦点F,且与抛物线交于A、B两点.

(1)设抛物线C:y2=2px(p>0),则2p=8,从而p=4因此焦点F(2,0),准线方程为x=-2;(2)证明:作AC⊥l,BD⊥l,垂足为C,D.则由抛物线的定义,可得|FA|=|AC|,|F

如图1-4-50,点C、B分别为抛物线C1:y1=x平方+1,抛物线C2:a2x平方+b2x+c2的顶点,分别过点B、C

这个是08年大连的中考最后一题,以下是我从网上找的--图的话有网址,自己看吧(1)如图9,连结AC、BC,直线AB交y轴于点E.∵AB‖x轴,CD‖x轴,C、B为抛物线C1、C2的顶点,∴AC=CB,

如图,已知抛物线C:y2=x和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)(y0≥1)作两条直线与⊙M

根据图形对称性特点,最小截距出现在AB平行于Y轴的情况下(EF平行Y轴),易求E点坐标(4,2),OE=2,OA=1,则易求A纵坐标为1/2,所以t的最小值是1/2

已知抛物线C1:y2=x+7,圆C2:x2+y2=5.

(1)由y2=x+7x2+y2=5得x2+x+2=0,∵△=1-8=-7<0,∴抛物线与圆没有公共点.(2)由题意知AD与BC的中点相同,设l为y=k(x-a),由y2=x+7y=k(x−a),得ky

如图,已知抛物线C1的解析式为y=-x^2+2x+8,图像与y轴交于D点,并且顶点A在双曲线上.若开口向上的抛物线C2与

设P(x,y)则y^2=8x则x>=0|PQ|^2=(x-a)^2+y^2=x^2+(8-2a)x+a^2=(x-(a-4))^2+8(a-2)当a-4=0时,最小值在x=a-4时取得,最小值是2√2

将抛物线y1=2x2向右平移2个单位,得到如图抛物线y2的图象,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,

∵抛物线y1=2x2向右平移2个单位,∴抛物线y2的函数解析式为y=2(x-2)2=2x2-8x+8,∴抛物线y2的对称轴为直线x=2,∵直线x=t与直线y=x、抛物线y2交于点A、B,∴点A的坐标为

已知抛物线C1:y=三分之二x²+三分之六x+8与抛物线c2关于y轴对称求抛物线c2的解析式

C1:y=(2/3)x^2+(6/3)x+8=(2/3)*(x+1.5)^2+(19.5/3)C2:y=(2/3)*(x-1.5)+(19.5/3)=(2/3)x^2-(6/3)x+8

如图,P是抛物线 y2=x2-6x+9对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交

∵直线x=t分别与直线y=x、抛物线y=x2-6x+9交于点A、B两点,∴A(t,t),B(t,t2-6t+9),AB=|t-(t2-6t+9)|=|t2-7t+9|,①当△ABP是以点A为直角顶点的

35.已知:如图,抛物线C1、C2关于x轴对称;抛物线C1、C3关于y轴对称.抛物线C1、C2、C3与x轴相交于A、B、

...sick.那么大个题目.--算啦~LZ.我帮你拉~菱形:ECFB等腰梯形:EBMH平行四边形:CMHA梯形:OFHN(这个想必就不用解释了.LZ只要在图中找到那几个点并且画出来就可以看清了)(2

抛物线C1:y1=x^2+2x和C2:y2=-x^2+a,若直线l同时是C1和C2的公切线.

答:设A(m,n),B(p,q)分别是y1,y2上的点,则过点的切线方程分别为y-n=(2m+2)(x-m)y-q=(-2p)(x-p)n=m^2+2m,q=p=-p^2+a分别代入得y=2(m+1)

如图,抛物线y1=-x²+2向右平移1个单位得到抛物线y2.

向上(1,^2)再问:不会啊,过程再问:不会啊,过程再答: 再答:刚才那里我漏了个负号再问:解析式怎么求

设抛物线C1的方程为y2=2px,其中p>o:椭圆C2的方程为(x-2-p/2)的平方+4y2=4.

根据图形,有且只有两个交点,将c1和c2方程联立,消去y,可得到一个带参数p的关于x的一元二次方程,由关于p的判别式可得出方程有一正一负两个实数根,但由c1方程可知,x值只能为正,也就是说c1和c2的

如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(

(1)∵点A(2,4)在抛物线C1上,∴把点A坐标代入y=a(x+1)2-5得a=1,∴抛物线C1的解析式为y=x2+2x-4,设B(-2,b),∴b=-4,∴B(-2,-4);(2)①如图∵M(1,

已知抛物线c1:y=2/3x+16/3x+8与抛物线c2关于y轴对称,求抛物线c2的解析式

控制开口大小不变,即二次项系数不变;对称轴关于y轴对称,所以将一次项系数符号变为负,顶点位置对称,所以最低点y轴坐标相同

抛物线C1;y2=8x与双曲线C2:x2/a2-y2/b2=1(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第

y^2=8x=2px,则p=4,焦点坐标是(2,0)即F2(2,0),那么F1(-2,0)设A坐标是(m,n)AF2=m+p/25=m+2,m=3,则n^2=8*3,n=2根号6.AF1=根号[(3+

如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a

解题思路:利用二次函数的性质求解。解题过程:过程请见附件。最终答案:略