如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:30:43
如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围.
如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围.
(1)∵点A(2,4)在抛物线C1上,
∴把点A坐标代入y=a(x+1)2-5得a=1,
∴抛物线C1的解析式为y=x2+2x-4,
设B(-2,b),
∴b=-4,
∴B(-2,-4);
(2)①如图
∵M(1,5),D(1,2),且DH⊥x轴,
∴点M在DH上,MH=5,
过点G作GE⊥DH,垂足为E,
由△DHG是正三角形,可得EG= ,EH=1,
∴ME=4,
设N(x,0),则NH=x-1,
由△MEG∽△MHN,得 ,
∴ ,
∴x= ,
∴点N的横坐标为 ;
②当点D移到与点A重合时,如图,
直线l与DG交于点G,此时点N的横坐标最大;
过点G,M作x轴的垂线,垂足分别为点Q,F,
设N(x,0),
∵A(2,4),
∴G( ,2),
∴NQ= ,NF=x-1,GQ=2,MF=5,
∵△NGQ∽△NMF,
∴ ,
∴ ,
∴ ,
当点D移到与点B重合时,如图:
直线l与DG交于点D,即点B,
此时点N的横坐标最小;
∵B(-2,-4),
∴H(-2,0),D(-2,-4),
设N(x,0),
∵△BHN∽△MFN,
∴ ,
∴ ,
∴ ,
∴点N横坐标的范围为 ≤x≤ .
∴把点A坐标代入y=a(x+1)2-5得a=1,
∴抛物线C1的解析式为y=x2+2x-4,
设B(-2,b),
∴b=-4,
∴B(-2,-4);
(2)①如图
∵M(1,5),D(1,2),且DH⊥x轴,
∴点M在DH上,MH=5,
过点G作GE⊥DH,垂足为E,
由△DHG是正三角形,可得EG= ,EH=1,
∴ME=4,
设N(x,0),则NH=x-1,
由△MEG∽△MHN,得 ,
∴ ,
∴x= ,
∴点N的横坐标为 ;
②当点D移到与点A重合时,如图,
直线l与DG交于点G,此时点N的横坐标最大;
过点G,M作x轴的垂线,垂足分别为点Q,F,
设N(x,0),
∵A(2,4),
∴G( ,2),
∴NQ= ,NF=x-1,GQ=2,MF=5,
∵△NGQ∽△NMF,
∴ ,
∴ ,
∴ ,
当点D移到与点B重合时,如图:
直线l与DG交于点D,即点B,
此时点N的横坐标最小;
∵B(-2,-4),
∴H(-2,0),D(-2,-4),
设N(x,0),
∵△BHN∽△MFN,
∴ ,
∴ ,
∴ ,
∴点N横坐标的范围为 ≤x≤ .
如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(
如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a
已知圆C1:x^2+(y-1)^2=4和抛物线C2:y=x^2-1过坐标原点O的直线与C2相交于点A.B,定点M坐标为(
如图,已知抛物线C1的方程为:y=x2,抛物线C1关于直线y=1的对称曲线为C2,曲线C1与C2的交点为A,B
如图,已知椭圆C1:y^/a^+x^/b^=1(a>b>1)与抛物线C2:x^=2py(p>0)的交点分别为A、B.
已知双曲线C1:X^2/a^2-Y^2/b^2=1的右焦点F为抛物线C2:y^2=2px的焦点,点p为双曲线C1与抛物线
35.已知:如图,抛物线C1、C2关于x轴对称;抛物线C1、C3关于y轴对称.抛物线C1、C2、C3与x轴相交于A、B、
已知抛物线C1:y=x^2 + 2x和C2:y=-x^2 + a,如果直线l同时是C1,C2切线,则称l是C1,C2的公
已知圆C1:x2+(y+5)2=5,点A(1,-3).①求过点A与圆C1相切的直线L的方程;②设圆C2为圆C1关于直线L
F1,F2是椭圆C1:x^2/4+y^2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边
已知抛物线C1:y^2=4x圆C2:(x-1)^2+y^2=1,过抛物线焦点的直线l交C1于A,D两点,交C2于B.C两
线段AB是圆C1:x2+y2+2x-6y=0的一条直径,离心率为5的双曲线C2以A,B为焦点.若P是圆C1与双曲线C2的