如图,在等边△abc中,∠c=90°,∠cba

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:27:21
如图,在等边△abc中,∠c=90°,∠cba
如图,在△ABC中,以AB、AC为边作等边△ABE、△ACF,以BC为边作等边△BCM

(1)四边形AEMF是平时四边形证明:∵∠MCB=∠ACF=60°∴∠ACB=∠MCF∵BC=CM,CA=CF∴△ABC≌△FMC∴MF=AB=AE同理可得△ABC≌△EBM∴AE=AC=AF∴四边形

如图,A、B、C、D是空间四点,在△ABC中,AB=2,AC=BC=2,等边△ADB所在的平面以AB为轴可转动.

(Ⅰ)取AB的中点E,连接DE,CE,因为ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC,可知DE⊥CE由已知可得DE=3,EC

如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.

(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DF

来帮做下初中的证明题(1)在△ABC中 ∠ 1=∠ 2 ∠ ABC=2∠ C 求证 AB=BD=AC(2)如图 在等边△

第一题:结论是AB+BD=Ac证明:在AC上截取AE=AB∵AB=AE,AD=AD,∠1=∠2∴△ABD≌△AED∴AB=AE,∠AED=∠B,BD=ED∵∠B=2∠C∴∠AED=2∠C∵∠AED=∠

如图,在等边△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向

1.y=(1/2)PD*([根号3]/2)CQ=-([根号3]/2)x^2+[根号3]x2.设AD、PQ交于点F,作QE⊥BC于E,则有CQ=2CE,已知CQ=2BP,故BP=CQ,又BD=CD,故P

如图:在Rt△ABC中,∠ACB=90°,∠BAC=30°,分别以AB,AC为边,在△ABC的外侧作等边△ABE和等边△

在△EGF和△DAF中,∵GE=EB×sin60°=AB×sin60°AD=CA=AB×sin60°∴GE=AD又∵∠GFE=∠AFD(对顶角),∠DAF=∠BAC+∠CAD=30°+60°=90°=

如图所示,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC外侧做等边△ABE和等边△ACD,DE

证:作EG⊥AB交AB于点G∵EG⊥AB∴∠FGE=90°=∠BCA∵等边△ABE∴AB=AE∴Rt△ABC≌Rt△EAG(HL)∴AC=EG∵等边△ACD∴AC=AD=EG,∠CAD=60°∵∠CA

如图,等边△ABC和等边△AEF的一边都在x轴上,双曲线y=k/x(k>0)边OB的中点C和AE的中点D.已知等边△OA

(1)作BM垂直x轴CN垂直x轴则OM=2ON=1BM=2根号3CN=根号3所以C(1,根号3)代入y=k/x得k=根号3所以y=根号3/x(2)作EM1,DN1垂直X轴设AN1=a,则AM1=2aE

如图:在等边△ABC中,BD平分∠ABC,延长BC到F,使CD=CF,连结DF.

证明:(1)∵△ABC是等边三角形,BD平分∠ABC,∴∠CBD=12∠ABC=60°÷2=30°,∵CD=CF,∴∠F=∠CDF=12∠ACB=60°÷2=30°,∴∠CBD=∠F,∴BD=DF.(

如图,在等边△ABC中,AP=BM=CN,判断△EFQ的形状,并说明为什么?

等边三角形!用全等证.要两组(每组3个)全等.

如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,D为线段AB上一个动点,以BD为边在△ABC外作等边

解题思路:本题考查勾股定理,二次函数最值,请看详细解答过程。解题过程:

如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.

(1)证明:∵△ABC与△DCE是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠ECB+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS

1)如图,在等边△ABC中,BC边上任意取一点P,过点P作AC的平行线,过点C作AB的平行线,两线交于点Q,求证:AP=

1.设QP交AB于点G,利用平行线性质易证△GBP△CPQ为等边△则角PGA=BPQ=120度GQ=AC(平行四边形性质),BG=PG,得AG=QP又GP=BP则△AGP全等△QPB(SAS)则AP=

如图,已知△ABC中,∠C=90°,∠A=30°,等边△DEF的一边EF在直角边AC上移动,当点E与点C重合时,点D恰好

因为等边△DEF,所以EF=ED=DF,当点E与点C重合时,∠DEF=∠DCF=60°,又因为∠A=30°所以当点E与点C重合,点D恰好落在AB边上即∠CDA=90°,因为直角三角形中,30°角所对边

如图,在等腰Rt△ABC中,AC=BC.以斜边AB为一边做等边△ABD,使点C,D

因为△ABC为等腰直角三角形,且△ABD为等边三角形所以容易看出CD为∠ADB的角平分线,所以∠ADC=30°又△CDE为等边三角形,所以∠ADE=30°,那么AD为∠CDE的角平分线因为△CDE为等

28、如图,等边△ABC中AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在AD下方作等边△CDE,连BE(1)

(1)证明:因为△ABC和△CDE都是等边三角形,所以AC=BC,DC=CE,∠ACB=∠DCE=60°,则∠ACB-∠DCO=∠DCE-∠DCO,即∠DCA=∠BCE.所以△ACD≌△BCE,故AD

已知:如图,在Rt△ABC中,∠C=90°,∠A=30°,分别以AB、AC为边在△ABC的外侧作等边△ABE和等边△AC

证明:过E作EG丄AB于G,如图,∵△ABE为等边三角形,∴BG=12AB,∠ABE=∠BEA=∠EAB=60°,AE=AB,∵Rt△ABC中,∠C=90°,∠A=30°,∴BC=12AB,∴AG=B

  如图,在等边△ABC中,∠ACE=∠ABD,且CE=BD,联结AE、DE,说明DE//AB

证明:因为三角形ABC是等边三角形所以角BAC=60度AB=AC因为角ABD=角ACEBD=CE所以三角形ABD和三角形ACE全等(SAS)所以角BAD=角CAEAD=AE所以三角形ADE是等腰三角形