如图,在⊙O中,弦CD与直径AB交于点E若BE=5,AE=3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:27:34
如图,在⊙O中,弦CD与直径AB交于点E若BE=5,AE=3
如图,在圆O中,AB是直径,CD是弦,CE垂直CD与点c,交AB与点E,DF垂直CD,交AB与点F.求证AE=BF

证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C,D重合),求证:

⑴设弧CAD为劣弧.∵AB⊥CD,∴∠OBC=∠OBD,∵OB=OC=OD,∴∠OCB=∠OBC=∠ODB=∠OBD,∵∠P+∠CBD=180°(圆内接四边形对角互补),而∠COB+∠COB+∠OCB

如图,在⊙O中,直径AB⊥弦CD,E为垂足,AE=4,CE=6,求⊙O的半径.

连接OB,设⊙O的半径是R,∴CD⊥AB,CD过O,∴AB=2AE=2BE,AE=BE=4,在Rt△OBE中,由勾股定理得:OB2=BE2+OE2,即R2=42+(R-6)2,R=133,答:⊙O的半

如图在⊙O中,AB是直径,CD是弦,AB丄CD.点P在劣弧CD上(不与C,D重合时)∠CPD与∠COB有什么数量关系?

∠CPD+∠COB=180°,证明如下:∵∠COP=2∠CDP,  ∠DOP=2∠DCP,∴∠COP+∠DOP=2(∠CDP+∠DCP)即 ∠COD=2(∠CDP+∠DC

如图,在⊙O中,直径AB=10,弦CD⊥AB,垂足为点E,若OE=3,则CD=______.

连接OC,∵直径AB=10,∴OC=12AB=5,∵CD⊥AB,OE=3,∴CD=2CE,在Rt△OCE中,CE2+OE2=OC2,即CE2+32=52,解得CE=4,∴CD=2CE=2×4=8.故答

如图,在⊙o中,直径AB与弦CD相交于点P且角APC=45°,AP=5 PB=1 求CD的长

过B作BE‖CD交圆O于点E作直径EF交CD于G∵∠APC=45°∴∠ABE=45°又∵OB、OE为半径∴△BOE为等腰直角三角形∴△POG为等腰直角三角形由题意得:OP=2∴PG=2×2½

如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,

(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA

如图,两个半圆中,小圆的圆心O'在大⊙O的直径CD上,长为4的弦AB与直径CD平行且与小半圆相切,那么圆中阴影部分面积等

连接OB,作OP⊥AB于P.阴影部分的面积=12π•OB2-12π•OP2=12π(OB2-OP2)=12π•BP2=2π.再问:有图了,帮帮忙,谢谢!

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),

因为CD和AB是垂直的,AB是直径平分CD所以2∠COB=∠CPB,2∠DPB=∠DOB因为弧BD=弧CB,所以∠COB=∠DOB因为2∠CPB=2∠BPD=∠COB所以∠CPD=∠COB∠CP’D+

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD

因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB

因为CD和AB是垂直的,AB是直径平分CD所以2∠COB=∠CPB,2∠DPB=∠DOB因为弧BD=弧CB,所以∠COB=∠DOB因为2∠CPB=2∠BPD=∠COB所以∠CPD=∠COB∠CP’D+

如图,在圆O中,直径AB与弦CD相交,分别过点B、O、A向弦CD做垂线,垂足分别为E、F、G.求证:CE=DG.

证明:∵OF⊥CD∴CF=DF(垂径定理)∵BE⊥CD,AG⊥CD∴BE//OF//AG∴EF/FG=BO/AO∵BO=AO∴EF=FG∴CF-EF=DF-FG即CE=DG

如图,在⊙O中,直径AB⊥弦CD于点M,AM=18,BM=8,求CD的长.

连接OC,∵AM=18,BM=8,∴半径OC=OA=OB=13,∴OM=5,∵直径AB⊥弦CD于点M,∴CD=2CM=2DM,在Rt△OCM中,由勾股定理得:CM=132−52=12,∴CD=24.

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图,已知⊙O中,直径CD与弦AB垂直,垂足为E,CD=10,DE=2,求AB的长

连接AO,OE=OD-ED=5-2=3AO=1/2CD=5在直角三角形AOE中根据勾股定理得到AE=4则AB=2AE=8