如图,ab为⊙o的直径,cd是弦,它们相交于点p,ae

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:26:04
如图,ab为⊙o的直径,cd是弦,它们相交于点p,ae
如图AB、CD是⊙O的直径,E为⊙O上一点,且AE‖CD,求证:D是弧BE的中点

证明:∵AE‖CD∴弧AC=弧DE∵∠AOC=∠BOD∴弧AC=弧BD∴弧BD=弧DE即D是弧BE的中点

如图,AB是同心圆O的直径,CD是同心圆O中非直径的弦,求证:AB>CD

作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE

如图.AB是半圆O的直径,CD垂直AB于D.CE是切线.E为切点

题目不完整,我估计F是CD与BE的交点连接EO,则CE垂直于EO,则角CEF+角OEF=90度,又因为AB为直径,故角AEB=90度,即角AEO+角OEF=90度,故角AEO=角CEFCE为切线,则角

如图,AB是圆O的直径,CD为弦,CD⊥AB于点E

∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10

如图,已知AB和CD是⊙O上的两条直径,AE为弦,若AE//CD,求证DE弧=DB弧.

证明:连接OE,则有OE=OC∴∠OAE=∠OEA∵AE//CD∴∠OAE=∠COA,∠OEA=∠DOE∵∠BOD=∠COA∴∠BOD=∠DOE∴DE弧=DB弧

如图,AB为⊙O的直径,弦CD⊥AB于点E.

(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,

(2010•河东区一模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若CD=22,CA=6,则直径AB的长为(  )

∵AB是⊙O的直径,弦CD⊥AB,垂足为E,CD=22,∴CE=2,在Rt△ACE中,∵CE=2,CA=6,∴AE=AC2−CE2=(6)2−(2)2=2,连接OC,设此圆的半径为x,则OE=2-x,

如图,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.若EB=8cm,CD=24cm,求⊙O的直径.

∵AB为⊙O的直径,AB⊥CD,∴CE=DE=12CD=12×24=12(cm),设⊙O的半径为xcm,则OC=xcm,OE=OB-BE=x-8(cm),在Rt△OCE中,OC2=OE2+CE2,∴x

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.求证:

证明:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°.①(2分)∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD

因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=

如图,CD是⊙O的弦,AB是直径,CD⊥AB,垂足为P,求证:PC2=PA•PB.

证明:连接AC,BD,∵∠A=∠D,∠C=∠B,∴△APC∽△DPB.∴CPBP=APDP,∴CP•DP=AP•BP.∵AB是直径,CD⊥AB,∴CP=PD.∴PC2=PA•PB.

如图,AB是⊙O的直径,CD是⊙O的切线,C为切点,∠B=25゜,则∠D等于______.

如右图,连接OC,∵AB是⊙O的直径,CD是⊙O的切线,∴CD⊥OC,∵∠B=25°,∴∠AOC=50°,∴∠D=40°.故答案为40°.

如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是______.

∵⊙O的直径CD=5cm,∴OD=OC=12CD=12×5=52(cm),∵OM:OD=3:5,∴OM=35×52=32(cm),连接OA,∵AB⊥CD,∴AB=2AM,在Rt△OAM中,OA2=OM

如图,AB为⊙O的直径,E为⊙O上一点,C是弧EB的中点,CD垂直AE于D.

连接CA弧BC=弧CE,∴∠EAC=∠CAB.∠EAB=2∠CAB∠COB=2∠CAB(同弧所对圆心角是圆周角的2倍)∠EAB=∠COBOC‖AE,即OC‖AD

已知 如图 AB是⊙O的直径 点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F

1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC

如图,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,

作AE,BF,OP垂直CD于EFPAEFB是梯形,OP是该梯形的中位线,所以OP=1/2(AE+BF)由垂径定理可以得到CP=DP=1/2CD=4cm所以OP=sqrt(5^2-4^2)=3cmAE+

如图,AB为圆O的直径,CD为圆O得弦,

1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=