在圆o中 ab为直径 点c为圆上一点,如图一,过点C作圆O的切线,与AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:40:49
先作辅助线CB求采纳哦角2是20度角1是40度角4是70度角ACB是90度
(1)OA=OD,所以角A=角ADOAD//OE角ADO=角DOE,角COE=角A=角DOEOD=OC,OE=OE所以三角形DOE与COE全等所以角ODE=90度ED是圆O切线(2)没有给边的长度,求
证明:因为E是AC中点,CO=BO所以OE是△ABC的中位线,所以OE∥AB,所以∠COE=∠B,.∠EOD=∠ODB,又OD=OB,所以∠ODB=∠B,所以∠EOC=∠EOD,又CO=DO,EO是公
1、证明:连接CD∵直径AC∴∠ADC=90∴CD⊥AB∵OE∥AB∴OE⊥CD∵OC=OD∴∠COE=∠DOE(三线合一)∵OE=OE∴△COE≌△DOE(SAS)∴∠ODE=∠C∵∠C=90∴∠O
/>1、设AC=3X∵AC:BC=3:4,AC=3X∴BC=4X∵直径AB∴∠ACB=90∴AC²+BC²=AB²∴9X²+16X²=100X=2(X
分析:(1)连接OD,利用同弧所对的圆周角等于所对圆心角的一半,得到∠HOD=2∠A,然后用等量代换得到∠ODE=90°,证明DE是⊙O的切线.(2)利用(1)的结论有∠ODE=90°,又已知∠OBE
这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid
连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)
连接ACAD角CPD+角CAD=180°角CAD又=角COB则角CPD+角COB=180°
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
过E作AB的垂线交AB于M,连接EF,容易证明△ACE≌△AME,则AM=AC,EM=EC;再证明△FCE≌△DME,得DM=FC,则直径AD=AM+MD=AC+FC=6,故半径为3
1、相切,2、6-兀,(要详解再说)再问:谢谢您为我解答。过程我会了。再答:感谢采纳,我的知道刚升至三级,呵呵。
(1)连接OC,∵CD切⊙O于点C∴∠OCD=90°(1分)∵∠D=30°∴∠COD=60°(2分)∵OA=OC∴∠A=∠ACO=30°;(4分)(2)∵CF⊥直径AB,CF=43∴CE=23(5分)
(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&
连接AE,OD、OE,∵AB是直径,∴AE⊥BC,∵∠C=60°,∴∠CAE=30°,∴∠DOE=60°(同弧所对的圆心角等于圆周角的2倍),∵OD=OE,∴ΔODE是等边三角形,∴DE=1/2AB=
(1),设圆心O,AP=a,PB=b,AB=AP+PB=a+b,连接OC,OD,OC=OD=AB/2=(a+b)/2,OP=AO-AP=(a+b)/2-a=(b-a)/2,直角三角形OPC与直角三角形
)这是相交弦定理,连AC,EB,因∠CAB=∠CEB,又有对顶角故三角形AMC∽EMB,所以AM*MB=EM*MC2)在直角三角形CDE中,CE=√(CD^2-DE^2)=√(64-15)=7EM=A
容易推得△AEO相似△ACB又因为BC=5AC=12得AB=13设半径为xAO=AC-CO=12-x由相似得OE/BC=AO/ABx/5=(12-x)/1313x=60-5x18x=60x=10/3即
(1)ED与圆O相切,证明如下:连接OD,∵OE∥AB,∴∠COE=∠CAD、∠EOD=∠ODA,(2分)∵∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,OD=OC∠DOE=∠CO