三个列向量线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:55:31
三个列向量线性无关
向量组a1a2a3线性无关

(b1,b2,b3)=(a1,a2,a3)KK=101220033因为|K|=12≠0所以K可逆所以r(b1,b2,b3)=r(a1,a2,a3)=3所以b1,b2,b3线性无关.怎么让证线性相关呢?

设n维列向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为

A不对!例如:a1=(1,0,0),a2=(0,1,0)b1=(0,2,0),b2=(0,0,1)两向量组都线性无关,但不等价,谁也不能表示谁B正确.因为A,B等价,即A可经初等变换化成B初等变换不改

老师,请问行向量组线性无关,其延伸组只能是增加列向量吗?

可能你理解有问题 若增加列向量的个数x 列向量组会线性相关. 比如增加一个全0的列. 这里1739 延伸组应该指增加行数 即列向量组增加分量. 是这样吧

设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.

先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1

证明矩阵列向量组线性无关

提供两种证法如图,第二种方法要用到秩的性质.经济数学团队帮你解答,请及时采纳.

如果向量组线性无关,证明向量组线性无关.

k1*a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=(k1+k2+..+ks)a1+(k2+k3+...+ks)a2+...+ks*as=0因为a1,a

证明向量组线性无关

可参考:http://zhidao.baidu.com/question/280278707.html

线性代数向量证明线性无关

反证法若相关,则存在x,y,z不全为0使得x(a1+a2)+y(a2+a3)+z(a3+a1)=0此即(x+y)a2+(x+z)a1+(y+z)a3=0若x,y,z不全为0,则x+y,y+z,x+z不

设A为n×s矩阵,A的列向量组线性无关,证明存在列向量线性无关的B,使得P=(A,B)可逆,且

R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行

A是m*n阶矩阵,B是n*s阶矩阵,B的列向量线性无关,若A的列向量线性无关,求证AB的列向量线性无关.

知识点:齐次线性方程组Ax=0只有零解的充分必要条件是A的列向量组线性无关.证明:考虑齐次线性方程组ABx=A(Bx)=0.由于A的列向量组线性无关,所以Bx=0又由B的列向量组线性无关,所以x=0所

为什么矩阵可逆,它的行向量组就线性无关,列向量组也线性无关?

因为如果A可逆,则Ax=0有唯一解0,xA=0也有唯一解0,而这恰好是列向量组和行向量组线性无关的定义

考研数学线性代数问题,若矩阵列向量线性无关,可以推导出行向量也线性无关吗?

矩阵列向量线性无关,不能推导出行向量也线性无关!齐次方程关键是看其列秩是否为n因为行秩等于列秩,行数(方程的个数)再多也是"多余"的,有"多余"的行,就说明其行向量组线性相关反之,没"多余"的行即无关

向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为

选D.秩相同推出n维b1,b2...向量组的秩是s,所以其线性无关;若b1,b2...线性无关,则其秩等于向量个数,即为s,可推出r(a1,a2...)=r(b1,b2...).所以是等价的.再问:那

n维列向量线性无关的充要条件是什么

表述法有若干.我只说2种:m个n维列向量线性无关的充要条件是:这m个n维列向量中,不存在一个向量,其可由其余向量线性表示.m个n维列向量线性无关的充要条件是:不存在一组不全为零的对应系数,使这m个n维

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

A^2=AA假设有A^2x=AAx=0,则有Ax=0,R(A)=n,所以x只有零解,所以有A^2*0=0,所以R(A^2)=n,故矩阵A^2的列向量线性无关

线性代数 向量线性无关问题

A是对的,因为矩阵的行秩=列秩,这个问题里列秩当然=m,必然有m个线性无关的列向量了.矩阵行秩=列秩是因为,初等变换不改变矩阵的秩,然后矩阵可以经初等变换化为标准形,矩阵的秩就是标准形里面1的个数,所

求列向量组一个极大线性无关组,并把其余向量用极大线性无关组表出.矩阵如图.

A=(α1,α2,α3,α4,α5)=2-1-11211-2144-62-2436-979r4-r1-r2,r3-2r1,r1-2r20-33-1-611-2140-44-4006-653r4+2r1

设n维列向量a1a2a3...am线性无关,则n维向量组b1b2.bm线性无关的充要条件

矩阵等价则矩阵的秩相同所以r(b1,...,bm)=r(B)=r(A)=r(a1,...,am)=m所以b1,...,bm线性无关

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

楼上看错了吧,是线性无关,不是线性相关.其实很容易,方阵A的列线性无关等价于det(A)非零,也等价于det(A^2)=det(A)^2非零.