作业帮 > 数学 > 作业

如图,四边形ABCD中,AB=AC=AD,E是BC的中点,AE=CE,∠BAC=3∠CBD,BD=6根号2+6根号6

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 03:02:35
如图,四边形ABCD中,AB=AC=AD,E是BC的中点,AE=CE,∠BAC=3∠CBD,BD=6根号2+6根号6
则AB=
如图,四边形ABCD中,AB=AC=AD,E是BC的中点,AE=CE,∠BAC=3∠CBD,BD=6根号2+6根号6
∠BAC=90
∠CBD=90/3=30
∠DBA=∠BAD=45-30=15
∠BAD=150
∠CAD=150-90=60
△CAD为等边三角形
设AB=a
BC=√2a
CD=a
在△BCD中,根据余弦定律:
CD^2=a^2=(6根号2+6根号6)^2+2a^2-2*(6根号2+6根号6)*√2acos30
j解方程得到:AB=a =12
还可以使用正弦定理
CD/SINCBD=BD/SINBCD
a/sin30=(6根号2+6根号6)/sin105
sin105=sin75=根号2+根号6/4
解出:AB=a=12