在△ABC中,∠ACB=90°,CD⊥AB于D,AE评分∠BAC交BC于E,交CD于F,FG平行AB小BC于G,试判断C
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 18:13:10
在△ABC中,∠ACB=90°,CD⊥AB于D,AE评分∠BAC交BC于E,交CD于F,FG平行AB小BC于G,试判断CE,CF,CB的数量关系
并说明理由
并说明理由
分析:根据已知利用角之间的关系得出∠CEF=∠CFE,由等角对等边可得到CE=CF,过E作EH⊥AB于H,利用AAS判定Rt△CFG≌Rt△EHB,从而得到CG=EB即CE=GB,所以就得到了CE=CF=GB.
CE=CF=GB.
理由:(1)∵∠ACB=90°,
∴∠BAC+∠ABC=90°.
∵CD⊥AB,
∴∠ACD+∠CAD=90°.
∴∠ACD=∠ABC.
∵AE平分∠BAC,
∴∠BAE=∠CAE.
∵∠CEF=∠BAE+∠ABC,∠CFE=∠CAE+∠ACD,
∴∠CEF=∠CFE.
∴CE=CF(等角对等边).
(2)过E作EH⊥AB于H,
∵AE平分∠BAC,EH⊥AB,EC⊥AC,
∴EH=EC(角平分线上的点到角两边的距离相等).
∴EH=EC.
∴EH=CF.
∵FG∥AB,
∴∠CGF=∠EBH.
∵CD⊥AB,EH⊥AB,
∴∠CFG=∠EHB=90°.
在Rt△CFG和Rt△EHB中
∵∠CGF=∠EBH,∠CFG=∠EHB,CF=EH,
∴Rt△CFG≌Rt△EHB.
∴CG=EB.
∴CE=GB.
∴CE=CF=GB.
CE=CF=GB.
理由:(1)∵∠ACB=90°,
∴∠BAC+∠ABC=90°.
∵CD⊥AB,
∴∠ACD+∠CAD=90°.
∴∠ACD=∠ABC.
∵AE平分∠BAC,
∴∠BAE=∠CAE.
∵∠CEF=∠BAE+∠ABC,∠CFE=∠CAE+∠ACD,
∴∠CEF=∠CFE.
∴CE=CF(等角对等边).
(2)过E作EH⊥AB于H,
∵AE平分∠BAC,EH⊥AB,EC⊥AC,
∴EH=EC(角平分线上的点到角两边的距离相等).
∴EH=EC.
∴EH=CF.
∵FG∥AB,
∴∠CGF=∠EBH.
∵CD⊥AB,EH⊥AB,
∴∠CFG=∠EHB=90°.
在Rt△CFG和Rt△EHB中
∵∠CGF=∠EBH,∠CFG=∠EHB,CF=EH,
∴Rt△CFG≌Rt△EHB.
∴CG=EB.
∴CE=GB.
∴CE=CF=GB.
在△ABC中,∠ACB=90°,CD⊥AB于D,AE评分∠BAC交BC于E,交CD于F,FG平行AB小BC于G,试判断C
如图所示,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC交BC于E交CD于F,FG平行于AB,则下列结
.在三角形ABC中,角ACB=90度,CD垂直AB于D,AE平分角BAC交BC于E,交CD于F,FG平行AB交BC于G判
在三角形ABC中,∠ACB=90°,CD⊥AB于7,AE平分∠BAC交CD于E,交BC于F,EG平行于AB交BC于G,求
如图:△ABC中∠ACB=90°,CD⊥AB于D,AE平分∠BAC交CD于F,FG∥AB交BC于G.试猜想CE与BG的数
已知在△ABC中 ∠BAC=90° AD⊥BC于D CE平分∠ACB交AD于F FG平行于BC交AB于G AE=2 AB
一道八年纪数学题如图,在三角形ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC交BC于E,交CD于F,FG‖
如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠BAC交CD于E,交BC于F,EG‖AB交BC于G
如图,三角形abc中,角acb=90度,cd垂直于ab与d,AE平分角BAC交BC于e,交CD于f,FG平行AB交BC于
在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC交BC于E,交CD于F,AF:AE=CD:BC成立吗
如图,在△ABC中,∠ACB=90°,AE平分∠BAC,CD⊥AE交AB于D,交AE于G,DF‖BC交AC于F,求证:D
如图 在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC交CD于E,EF‖AB交BC于F,求证:CE=