作业帮 > 数学 > 作业

f(x)是定义在区间[-1,1]上的偶函数,g(x)与f(x)关于线x=1对称,且当x∈[2,3]时,g(x)=2a(x

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 16:14:20
f(x)是定义在区间[-1,1]上的偶函数,g(x)与f(x)关于线x=1对称,且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)^3,
求f(x)函数表达式,
f(x)是定义在区间[-1,1]上的偶函数,g(x)与f(x)关于线x=1对称,且当x∈[2,3]时,g(x)=2a(x
f(x)=g(2-x),
2-x∈[2,3],得x∈[-1,0]
所以,-1≤x≤0时,f(x)=g(2-x)=-2ax+4x^3
0≤x≤1时,f(x)=f(-x)=2ax-4x^3
所以,f(x)=
-2ax+4x^3,-1≤x≤0
2ax-4x^3,0≤x≤1