设f(x)是定义在区间[-1,1]上的偶函数,当x∈[-1,0]时,f(x)=g(2-x),且当x∈[2,3]时,g(x
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 11:14:41
设f(x)是定义在区间[-1,1]上的偶函数,当x∈[-1,0]时,f(x)=g(2-x),且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3
(1)求f(x)的表达式.
(2)是否存在正实数a(a>6),使函数f(x)图象的最高点在直线y=12上?若存在,求出正实数a的值;若不存在,请说明理由.
(1)求f(x)的表达式.
(2)是否存在正实数a(a>6),使函数f(x)图象的最高点在直线y=12上?若存在,求出正实数a的值;若不存在,请说明理由.
(1)设x∈[0,1],则-x∈[-1,0],
由于当x∈[-1,0]时,f(x)=g(2-x),
且f(x)是定义在区间[-1,1]上的偶函数,
当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3
则f(x)=f(-x)=g(2+x),2+x∈[2,3],
即有f(x)=2ax-4x3,
当x∈[-1,0]时,f(x)=f(-x)=-2ax+4x3,
所以f(x)=
4x3−2ax,−1≤x≤0
−4x3+2ax,0<x≤1;
(2)假设这样的a存在,则由于f(x)是偶函数,
不妨设此时x∈[-1,0],则有f(x)=4x3-2ax,
f'(x)=12x2-2a=2(6x2-a)
因为6x2≤6<a,
所以6x2-a<0,f'(x)<0,f(x)在[-1,0]递减,
所以f(x)最大值为f(-1)=-4+2a=12,a=8.
所以存在a=8满足f(x)max=12.
由于当x∈[-1,0]时,f(x)=g(2-x),
且f(x)是定义在区间[-1,1]上的偶函数,
当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3
则f(x)=f(-x)=g(2+x),2+x∈[2,3],
即有f(x)=2ax-4x3,
当x∈[-1,0]时,f(x)=f(-x)=-2ax+4x3,
所以f(x)=
4x3−2ax,−1≤x≤0
−4x3+2ax,0<x≤1;
(2)假设这样的a存在,则由于f(x)是偶函数,
不妨设此时x∈[-1,0],则有f(x)=4x3-2ax,
f'(x)=12x2-2a=2(6x2-a)
因为6x2≤6<a,
所以6x2-a<0,f'(x)<0,f(x)在[-1,0]递减,
所以f(x)最大值为f(-1)=-4+2a=12,a=8.
所以存在a=8满足f(x)max=12.
设f(x)是定义在区间[-1,1]上的偶函数,当x∈[-1,0]时,f(x)=g(2-x),且当x∈[2,3]时,g(x
设F(X)是定义在[-1,1]上的偶函数,F(X)与G(X)的图像关于X=1对称,且当X∈[2,3]时g(x)=2a(x
f(x)是定义在区间[-1,1]上的偶函数,g(x)与f(x)关于线x=1对称,且当x∈[2,3]时,g(x)=2a(x
设函数f(x)是定义在[-1,1]上的偶函数,g(x)与f(x)的图象关于直线x-1=0对称,且当x∈[2,3]时,g(
设f(x)是定义在[-1,1]上的偶函数,g(x)的图像与f(x)的图像关于直线x=1对称,且当x∈[2,3]时,g(x
已如f(x)是定义在R上的偶函数,且满足f(x+2)=f(x),当x∈[0,1]时,f(x)=2x.若在区间[-2,3]
设f(x)是定义在R上的偶函数,且f(x-1)=f(x+1),当x属于[2,3]时,f(x)=x,则当x属于[-1,0]
f(x)是以2为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-
设f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x-2x2,则f(x)在区间[0,2013]内零
设f(x)是定义在R上的偶函数,且f(x+3)=-f(x),又当0<x≤1时,f(x)=2x
设f(x)是定义在[-1,1]上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而当x∈[2,3]时,g(x
设定义在R上的偶函数f(x)是周期为2的函数,且当x∈[2,3]时,f(x)=x,则当x∈[-1,0]f(x)=?