作业帮 > 数学 > 作业

sin2α=2tanα/(1+tan²α) ,cos2α=(1-tan²α)/(1+tan²

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 11:40:22
sin2α=2tanα/(1+tan²α) ,cos2α=(1-tan²α)/(1+tan²α)
问这两条式怎么来的
sin2α=2tanα/(1+tan²α) ,cos2α=(1-tan²α)/(1+tan²
用a代替
1/sin2a=(sin²a+cos²a)/2sinacosa
=sin²a/2sinacosa+cos²a/2sinacosa
=(1/2)(sina/cosa+cosa/sina)
=(1/2)(tana+1/tana)
=(tan²a+1)/(2tana)
sin2a=2tana/(tan²a+1)
cos2a=cos²a-sin²a
=(cos²a-sin²a)/1
=(cos²a-sin²a)/(cos²a+sin²a)
上下除cos²a
sin²a/cos²a=tan²a
所以cos2a=(1-tan²a)/(1+tan²a)