已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH、EG分别交边BC所在的直线于点H、G.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 00:58:53
已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH、EG分别交边BC所在的直线于点H、G.
(1)如图1,如果点E、F在边AB上,那么EG+FH=AC;
(2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是______;
(3)如图3,如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是______.
对(1)(2)(3)三种情况的结论,请任选一个给予证明.
(1)如图1,如果点E、F在边AB上,那么EG+FH=AC;
(2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是______;
(3)如图3,如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是______.
对(1)(2)(3)三种情况的结论,请任选一个给予证明.
(1)证明:∵FH∥EG∥AC,
∴∠BFH=∠BEG=∠A,△BFH∽△BEG∽△BAC.
∴
BF
FH=
BE
EG=
BA
AC.
∴
BF+BE
FH+EG=
BA
AC.
又∵BF=EA,
∴
EA+BE
FH+EG=
AB
AC.
∴
AB
FH+EG=
AB
AC.
∴AC=FH+EG.
(2)线段EG、FH、AC的长度的关系为:EG+FH=AC.
证明(2):过点E作EP∥BC交AC于P,
∵EG∥AC,
∴四边形EPCG为平行四边形.
∴EG=PC.
∵HF∥EG∥AC,
∴∠F=∠A,∠FBH=∠ABC=∠AEP.
又∵AE=BF,
∴△BHF≌△EPA.
∴HF=AP.
∴AC=PC+AP=EG+HF.
即EG+FH=AC.
(3)线段EG、FH、AC的长度的关系为:EG-FH=AC.
如图,过点A作AP∥BC交EG于P,
∵EG∥AC,
∴四边形APGC为平行四边形.
∴AC=PG.
∵HF∥EG∥AC,
∴∠F=∠E,∠FBH=∠ABC=∠PAE.
又∵AE=BF,
∴△BHF≌△EPA.
∴HF=EP.
∴AC=EG-EP=EG-HF.
即EG-FH=AC.
∴∠BFH=∠BEG=∠A,△BFH∽△BEG∽△BAC.
∴
BF
FH=
BE
EG=
BA
AC.
∴
BF+BE
FH+EG=
BA
AC.
又∵BF=EA,
∴
EA+BE
FH+EG=
AB
AC.
∴
AB
FH+EG=
AB
AC.
∴AC=FH+EG.
(2)线段EG、FH、AC的长度的关系为:EG+FH=AC.
证明(2):过点E作EP∥BC交AC于P,
∵EG∥AC,
∴四边形EPCG为平行四边形.
∴EG=PC.
∵HF∥EG∥AC,
∴∠F=∠A,∠FBH=∠ABC=∠AEP.
又∵AE=BF,
∴△BHF≌△EPA.
∴HF=AP.
∴AC=PC+AP=EG+HF.
即EG+FH=AC.
(3)线段EG、FH、AC的长度的关系为:EG-FH=AC.
如图,过点A作AP∥BC交EG于P,
∵EG∥AC,
∴四边形APGC为平行四边形.
∴AC=PG.
∵HF∥EG∥AC,
∴∠F=∠E,∠FBH=∠ABC=∠PAE.
又∵AE=BF,
∴△BHF≌△EPA.
∴HF=EP.
∴AC=EG-EP=EG-HF.
即EG-FH=AC.
已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH、EG分别交边BC所在的直线于点H、G.
如图,已知点E,F在△ABC的边AB所在的直线上,且AE=BF,FH//EG//AC.FH,EG分别交BC所在直线于点H
E,F是△ABC的边AB所在直线上的点,AE=BF,FH∥EG∥AC,FH,EG分别交边BC所在的直线于H,G
已知点E、F在ΔABC的边AB所在的直线上,且AE=BF,FH//EG//AC、FH、EG分别交边BC所在的直线于点H、
E,F是△ABC的边AB所在的直线上的点,AE=BF,FH∥EG∥AC,FH、EG分别交边BC所在的直线于点H、G.
已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点
急,已知点EF在三角形ABC的边AB所在的直线上,且AE=BF,HF//EG//AC,FH,EG分别交BC所在的直线于点
如图,点D是△ABC的边BC的中点,DE⊥AB于E,DF⊥AC于F,EG⊥AC于G,FH⊥AB于H,且EG和FH相交于点
已知在正方形ABCD中,点E.F.G.H分别在AB.BC.CD.DA上,且EG垂直于FH,求证EG=FH.
已知,在正方形ABCD中,点E.F.G.H分别在AB.BC.CD和DA上,且EG垂直于FH,求EG=FH.
如图,E、F是△ABC的边AB、BC边的中点,在AC上取G、H两点,使AG=GH=HC,连接EG、FH并延长交于点D
如图,已知E,F为△ABC的边AB,BC的中点,在AC上取G,H两点,是AG=GH=HC,连接EG,FH并延长交与点D.