有关高一数列的1、在数列{An}中A1=1,A(n+1)=(1+1/n)An+(n+1)/2^n.(1)求该数列的通项公
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 02:54:39
有关高一数列的
1、在数列{An}中A1=1,A(n+1)=(1+1/n)An+(n+1)/2^n.(1)求该数列的通项公式;(2)求该数列的前n项和Sn.
2、数列{An}中Sn=-An-(1/2)^(n-1)+2.(1)求该数列的通项公式;(2)若Bn=(n+1)An/n,Tn=B1+B2+……+Bn,求证Tn<3
注:A(n+1)即数列{An}的第n+1项,B1、B2……即数列{Bn}的第1、2……项
1、在数列{An}中A1=1,A(n+1)=(1+1/n)An+(n+1)/2^n.(1)求该数列的通项公式;(2)求该数列的前n项和Sn.
2、数列{An}中Sn=-An-(1/2)^(n-1)+2.(1)求该数列的通项公式;(2)若Bn=(n+1)An/n,Tn=B1+B2+……+Bn,求证Tn<3
注:A(n+1)即数列{An}的第n+1项,B1、B2……即数列{Bn}的第1、2……项
1.由A1=1 A(n+1)=(1+1/n)An+(n+1)/2^n得
A(n+1)/(n+1)-An/n=1/2^n
设Bn=An/n B(n+1)=A(n+1)/(n+1) B1=A1=1
则B(n+1)-Bn=1/2^n
Bn-B(n-1)=1/2^(n-1)
.
B2-B1=1/2
叠加Bn-B1=1/2+1/2^2+...+1/2^(n-1)=(1/2)[1-1/2^(n-1)]/(1-1/2)=1-1/2^(n-1)
Bn=2-1/2^(n-1)
An=nBn=2n-n/2^(n-1)
设Sn=2∑n-∑n/2^(n-1)=n(n+1)-Tn
Tn=1+2/2^1+...+n/2^(n-1)
(1/2)Tn=1/2^1+2/2^2+...+n/2^n
错位相减(1/2)Tn=1+1/2^1+1/2^2+...+1/2^(n-1)-(n+1)/2^n=(1-1/2^n)/(1-1/2)-n/2^n
=2-2/2^n-n/2^n=2-(n+2)/2^n
∴Tn=4-(n+2)/2^(n-1)
∴Sn=n^2+n+4-(n+2)/2^(n-1)
2.Sn=-An-1/2^(n-1)+2 S1=a1=-a1-1+2 a1=1/2
S(n-1)=-A(n-1)-1/2^(n-2)+2
∴An=Sn-S(n-1)=A(n-1)-An+1/2^(n-1)
∴An*2^n-A(n-1)*2^(n-1)=1
即{An*2^n}是公差为1的等差数列
An*2^n=2A1+n-1=n
∴(1) An=n/2^n
(2) Bn=(n+1)An/n=(n+1)/2^n
Tn=2/2^1+3/2^2+...+(n+1)/2^n
(1/2)Tn=2/2^2+3/2^3+...+(n+1)/2^(n+1)
错位相减(1/2)Tn=2/2^1+1/2^2+...+1/2^n-(n+1)/2^(n+1)=1/2+(1/2)*(1-1/2^n)/(1-1/2)-(n+1)/2^(n+1)
=1/2+1-1/2^n-(n+1)/2^(n+1)
∴Tn=3-(n+1)/2^n-2/2^n=3-(n+3)/2^n
∴Tn
A(n+1)/(n+1)-An/n=1/2^n
设Bn=An/n B(n+1)=A(n+1)/(n+1) B1=A1=1
则B(n+1)-Bn=1/2^n
Bn-B(n-1)=1/2^(n-1)
.
B2-B1=1/2
叠加Bn-B1=1/2+1/2^2+...+1/2^(n-1)=(1/2)[1-1/2^(n-1)]/(1-1/2)=1-1/2^(n-1)
Bn=2-1/2^(n-1)
An=nBn=2n-n/2^(n-1)
设Sn=2∑n-∑n/2^(n-1)=n(n+1)-Tn
Tn=1+2/2^1+...+n/2^(n-1)
(1/2)Tn=1/2^1+2/2^2+...+n/2^n
错位相减(1/2)Tn=1+1/2^1+1/2^2+...+1/2^(n-1)-(n+1)/2^n=(1-1/2^n)/(1-1/2)-n/2^n
=2-2/2^n-n/2^n=2-(n+2)/2^n
∴Tn=4-(n+2)/2^(n-1)
∴Sn=n^2+n+4-(n+2)/2^(n-1)
2.Sn=-An-1/2^(n-1)+2 S1=a1=-a1-1+2 a1=1/2
S(n-1)=-A(n-1)-1/2^(n-2)+2
∴An=Sn-S(n-1)=A(n-1)-An+1/2^(n-1)
∴An*2^n-A(n-1)*2^(n-1)=1
即{An*2^n}是公差为1的等差数列
An*2^n=2A1+n-1=n
∴(1) An=n/2^n
(2) Bn=(n+1)An/n=(n+1)/2^n
Tn=2/2^1+3/2^2+...+(n+1)/2^n
(1/2)Tn=2/2^2+3/2^3+...+(n+1)/2^(n+1)
错位相减(1/2)Tn=2/2^1+1/2^2+...+1/2^n-(n+1)/2^(n+1)=1/2+(1/2)*(1-1/2^n)/(1-1/2)-(n+1)/2^(n+1)
=1/2+1-1/2^n-(n+1)/2^(n+1)
∴Tn=3-(n+1)/2^n-2/2^n=3-(n+3)/2^n
∴Tn
有关高一数列的1、在数列{An}中A1=1,A(n+1)=(1+1/n)An+(n+1)/2^n.(1)求该数列的通项公
在数列{An}中,A1=2,An+1=3An+3n.求数列{An}的前项n和S(高一数学)
在数列{an}中,a1=1,2a(n+1)=(1+1/n)^2*an,证明数列{an/n^2}是等比数列,并求{an}的
有关数列的几道题1在数列{an}中,已知(n²+n)an+1=(n²+2n+1)an,且a1=1,则
在数列{an}中,a1=2,sn=4A(n+1) +1 ,n属于N*.求数列{an}的前n项和Sn
在数列{an}中,a1=1,a2=4,a(n+1)=5an-6a(n-1)-2,求该数列的通项
在数列{an}中,a1=2,a2=5,a(n+1)=5an-6a(n-1),求该数列的通项
在数列an中,a1=1,且an=(n/(n-1))a(n-1)+2n*3的(n-2)次方 求an通项公式
已知在数列An中,A1=2 A(n+1)=An+n 求An的通项公式
在数列{an}中,a1=1,2an+1=(1+1/n)^2*an,证明:数列{an/n^2}是等比数列,并求an的通项公
问一道高一数列的题目,a1=1,a(n+1)=2an+2^n,求an,
数列an中,a1=2,a(n+1)=an+ln(n/n+1),求数列an的通项公式