作业帮 > 数学 > 作业

已知数列{an}满足log2(Sn+1)=n,其中Sn为数列{an}的前几项和,求证:数列{an}为等比数列

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 05:18:23
已知数列{an}满足log2(Sn+1)=n,其中Sn为数列{an}的前几项和,求证:数列{an}为等比数列
已知数列{an}满足log2(Sn+1)=n,其中Sn为数列{an}的前几项和,求证:数列{an}为等比数列
证明:由已知得:Sn+1=2^n Sn=2^n-1
an/a(n-1)=[sn-s(n-1]/[s(n-1)-S(n-2)]
=[2^n-1-2^(n-1)+1]/[2^(n-1)-1-2^(n-2)+1]
=2^(n-1)/2^(n-2)=2 (常数)
所以{an}为等比数列