高中数学,圆锥曲线.以过抛物线焦点的两条弦AB,CD为直径作圆,证明这两个圆的公共弦过原点.
高中数学,圆锥曲线.以过抛物线焦点的两条弦AB,CD为直径作圆,证明这两个圆的公共弦过原点.
设过抛物线的焦点F作直线与抛物线相交于M,N.以MN为直径的圆与抛物线的准线的位置关系是----------------
过双曲线x^2-y^2=1的右焦点的弦AB过右焦点F,是否存在以AB为直径的圆过原点O,若存在,求出直线AB的斜率k
过抛物线y2=2px(p>0)的焦点F作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是( )
(本题满分13分)已知抛物线 的焦点为F,直线 过定点 且与抛物线交于P,Q两点。(1)若以弦 为直径的圆恒过原点 ,求
过抛物线y^2=4x焦点的直线交抛物线于AB两点 以AB为直径的圆中 面积的最小值为
过抛物线y2=4x的焦点F作垂直于x轴的直线,交抛物线于A,B两点,则以F为圆心、AB为直径的圆的方程是 ______.
椭圆的中心在原点,右焦点为(1,0),过右焦点的弦AB的斜率为1,若以AB为直径的圆经过椭圆的左焦点.求椭圆方程.
证明以抛物线的焦点弦为直径的圆与抛物线的准线相切
已知过抛物线y^2=2px(p>0)的焦点F作一条直线与抛物线交于A、B两点,以线段AB为直径的圆与直线x=-1相切,求
F为抛物线y2=4x的焦点,直线l与其交于A.B两点,与x轴交于P点,且以AB为直径的圆过原点O,则OF·FP
抛物线及其标准方程求过抛物线的焦点F的弦PQ,以PQ为直径的圆与抛物线的准线的位置关系.