F为抛物线y2=4x的焦点,直线l与其交于A.B两点,与x轴交于P点,且以AB为直径的圆过原点O,则OF·FP
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:35:42
F为抛物线y2=4x的焦点,直线l与其交于A.B两点,与x轴交于P点,且以AB为直径的圆过原点O,则OF·FP
是向量OF和向量FP的数量积
是向量OF和向量FP的数量积
设P(p,0),(p≠0)l:x=ty+p
x=ty+p代入y²=4x
得:y²=4(ty+p)
即y²-4ty-4p=0
设A(x1,y1),B(x2,y2)
根据韦达定理:
y1+y2=4t,y1y2=-4p
∵以AB为直径的圆过原点O
∴∠AOB=90º
∴向量OA●OB=0
即x1x2+y1y2=0
∴x1x2-4p=0
x1x2=4p
又y²1=4x1,y²2=4x2
∴16x1x2=(y1y1)²
∴64p=16p²
∵p≠0,∴p=4
即P(4,0)
又F(1,0)
∴OF·FP
=(1,0)●(3,0)
=3
x=ty+p代入y²=4x
得:y²=4(ty+p)
即y²-4ty-4p=0
设A(x1,y1),B(x2,y2)
根据韦达定理:
y1+y2=4t,y1y2=-4p
∵以AB为直径的圆过原点O
∴∠AOB=90º
∴向量OA●OB=0
即x1x2+y1y2=0
∴x1x2-4p=0
x1x2=4p
又y²1=4x1,y²2=4x2
∴16x1x2=(y1y1)²
∴64p=16p²
∵p≠0,∴p=4
即P(4,0)
又F(1,0)
∴OF·FP
=(1,0)●(3,0)
=3
F为抛物线y2=4x的焦点,直线l与其交于A.B两点,与x轴交于P点,且以AB为直径的圆过原点O,则OF·FP
过抛物线y2=4x的焦点F作垂直于x轴的直线,交抛物线于A,B两点,则以F为圆心、AB为直径的圆的方程是 ______.
已知直线l过点M(4,0)且与抛物线y的平方=2px(p>0)交于A、B两点,以炫AB为直径的圆恒过坐标原点O.求抛物线
过抛物线y^2=4x的焦点F的直线L与这条抛物线交于A.B两点,O为坐标原点
)已知抛物线y^2=4x,过点P(-2,0)的一条直线l交抛物线于A,B两点,O为坐标原点,F为焦点
过抛物线y2=4x的焦点的直线交抛物线于A、B两点,O为坐标原点,则OA
已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,弦AB的.
设O为坐标原点,抛物线y2=2x与过焦点的直线交于A、B两点,则kOA•kOB=______.
设坐标原点为O,抛物线y2=2x与过焦点的直线交于A、B两点,则OA•OB=( )
已知过点p(0,2)的直线l与抛物线y∧2=4x交于a,b两点,o为坐标原点.
过抛物线y2=4x焦点F的直线L与它交于A,B两点,O为原点若|AF|=3,求三角形AOB面积
已知直线l经过线y^2=(-4/3)x的焦点F,且与抛物线交于A、B两点,求证:以AB为直径的圆与抛物线的准线相切.