作业帮 > 数学 > 作业

1/x-10+1/x-6=1/x-7+1/x-9 求x的值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 12:46:22
1/x-10+1/x-6=1/x-7+1/x-9 求x的值
1/x-10+1/x-6=1/x-7+1/x-9 求x的值
1/(x-10)+1/(x-6)=1/(x-7)+1/(x-9)
分式方程
通分得:
[(X-6)+(X-10)]/[(X-6)*(X-10)]=[(X-7)+(X-9)]/[(X-7)*(X-9)]
(2X-16)/(X^2-16X+60)=(2X-16)/(X^2-16X+63)
要使方程成立,则2X-16=0(1)或X^2-16X+60=X^2-16X+63(2)
1/(x-10)+1/(x-6)=1/(x-7)+1/(x-9)
1/(x-10)-1/(x-9)=1/(x-7)-1/(x-6)
[(x-9)-(x-10)]/(x-10)(x-9)=[(x-6)-(x-7)]/(x-7)(x-6)
即是
1/(x-9)(x-10)=1/(x-6)(x-7)
x^2-13x+42=x^2-19x+90
6x=68
得出:x=8
(1)的解为:X=8;(2)无解
所以:1/(x-10)+1/(x-6)=1/(x-7)+1/(x-9)的解为X=8