作业帮 > 综合 > 作业

已知函数f(x)=lnx−ax+1−ax−1(a>0).

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/17 08:05:00
已知函数f(x)=lnx−ax+
1−a
x
−1(a>0)
已知函数f(x)=lnx−ax+1−ax−1(a>0).
(1)∵函数f(x)=lnx−ax+
1−a
x−1(a>0),
所以f′(x)=
−ax2+x+a−1
x2(x>0),
令h(x)=ax2-x+1-a(x>0)
当a≠0时,由f′(x)=0,即ax2-x+1-a=0,解得x1=1,x2=
1
a-1.
当a=
1
2时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)单调递减;
当0<a<
1
2时,
1
a-1>1>0,x∈(0,1)时h(x)>0,f′(x)<0,函数f(x)单调递减;
x∈(1,
1
a-1)时,h(x)<0,f′(x)>0,函数f(x)单调递增;
x∈(
1
a-1,+∞)时,h(x)>0,f′(x)<0,函数f(x)单调递减.

1
2<a<1时,0<
1
a-1<1,x∈(0,
1
a-1)时h(x)>0,f′(x)<0,函数f(x)单调递减;
x∈(
1
a-1,1)时,h(x)<0,f′(x)>0,函数f(x)单调递增;
x∈(1,+∞)时,h(x)>0,f′(x)<0,函数f(x)单调递减
综上所述:当0<a<
1
2时,函数f(x)在(0,1)、(
1
a-1,+∞)单调递减,(1,
1
a-1)单调递增;
当a=
1
2时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)在(0,+∞)单调递减;

1
2<a<1时,函数f(x)在(0,
1
a-1)单调递减,(
1
a-1,1)单调递增,(1,+∞)单调递减.
(2)当a=
1
4时,f(x)在(0,1)上是减函数,在(1,2)上是增函数,
所以对任意x1∈(0,2),有f(x1)≥f(1)=-
1
2,
又已知存在x2∈[1,2],使f(x1)≥g(x2),
所以-
1
2≥g(x2),x2∈[1,2],(※)
又g(x)=(x-b)2+4-b2,x∈[1,2]
当b<1时,g(x)min=g(1)=5-2b>0与(※)矛盾;
当b∈[1,2]时,g(x)min=g(b)=4-b2≥0也与(※)矛盾;
当b>2时,g(x)min=g(2)=8-4b≤-