已知圆在x轴上的两截距分别为a,b,在y轴上的一个截距为c.(c不等于0),则圆方程为( )
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 15:57:21
已知圆在x轴上的两截距分别为a,b,在y轴上的一个截距为c.(c不等于0),则圆方程为( )
圆在x轴上两个截距分别为a、b,在y轴上的一个截距为c(c≠0),
则原点必在圆心内.
设,a为X轴的负半轴,b为X轴的正半轴上,c为Y轴的正半轴上,则有,
令,点A坐标为(a,0),点B坐标为(b,0),点C坐标为(0,c).
AC的斜率为Kac=c/a,令,AC的中点为D,点D坐标为(X1,Y1),O为圆心,则OD的斜率为Kod=-a/c,
x1=(0+a)/2=a/2,y1=c/2.
直线OD的方程为Y=-a/c*x+c,
直线AB的中点坐标为(X2,Y2),
X2=(a+b)/2,
则圆心的横坐标为X=(a+b)/2,
圆心的纵坐标为Y=-a/c*[(a+b)/2]+c=-(a^2+ab+2c^2)/2c.
圆的半径为:
R^2=[a-(a+b)/2]^2+[-(a^2+ab+2c^2)/2c]^2.
=(a-b)^2/4+(a^2+ab+2c^2)^2/(4c^2).
则此圆方程为:
[X-(a+b)/2]^2+[Y+(a^2+ab+2c^2)/2c]^2=(a-b)^2/4+(a^2+ab+2c^2)^2/(4c^2).
则原点必在圆心内.
设,a为X轴的负半轴,b为X轴的正半轴上,c为Y轴的正半轴上,则有,
令,点A坐标为(a,0),点B坐标为(b,0),点C坐标为(0,c).
AC的斜率为Kac=c/a,令,AC的中点为D,点D坐标为(X1,Y1),O为圆心,则OD的斜率为Kod=-a/c,
x1=(0+a)/2=a/2,y1=c/2.
直线OD的方程为Y=-a/c*x+c,
直线AB的中点坐标为(X2,Y2),
X2=(a+b)/2,
则圆心的横坐标为X=(a+b)/2,
圆心的纵坐标为Y=-a/c*[(a+b)/2]+c=-(a^2+ab+2c^2)/2c.
圆的半径为:
R^2=[a-(a+b)/2]^2+[-(a^2+ab+2c^2)/2c]^2.
=(a-b)^2/4+(a^2+ab+2c^2)^2/(4c^2).
则此圆方程为:
[X-(a+b)/2]^2+[Y+(a^2+ab+2c^2)/2c]^2=(a-b)^2/4+(a^2+ab+2c^2)^2/(4c^2).
已知圆在x轴上的两截距分别为a,b,在y轴上的一个截距为c.(c不等于0),则圆方程为( )
已知圆在x轴上两个截距分别为a、b,在y轴上的一个截距为c(c≠0),试求此圆方程(在线等)RT
已知圆c在x轴上的截距为-1和3,在y轴上的一个截距是1 求圆c的标准方程
已知二次函数f(x)=ax^2+bx+c(a,b是常数,且a不等于0)满足:①f(x)的图像在y轴上的截距为0;②方程f
圆在x轴上截距为a,b,在y轴上一截距为c(c不等于0),求此圆的方程
直线和圆的方程已知圆C:x^2+y^2=4,点D(4,0),坐标原点为O.圆C上任意一点A在x轴上的射影为点B,已知向量
圆的标准方程部分.已知圆心为C的圆C,经过点A(1,1),B(2,-2),且圆心在x-y+1=0上,求圆心为C的标准方程
已知直线l方程为2x-5y+10=0,且在x轴上的截距为a,在y轴上的截距为b,则|a+b|等于( )
已知圆C在X轴上的一个截距为-2,在Y轴上的截距为1和3,求圆C的方程
已知A、B在反比例函数y=k/x的图像上,且A、B的横坐标分别为a,2a(a>0),AC⊥x轴,垂足为C点,且△AOC的
已知圆心为C的圆经过点A(0,-6),B(1,-5),且圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方程.
若圆C在x轴上截得弦长为6,在y轴上的一个截距为-1,且圆心在直线3x-2y+4=0,求圆C的方程