如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,椭圆经过点M(2,1),平行于OM的直线L在y
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:17:32
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,椭圆经过点M(2,1),平行于OM的直线L在y
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,椭圆经过点M(2,1),平行于OM的直线L在y 轴上的截距m(m不等于0),L交椭圆A,B两个不同点。求椭圆的方程和m的取值范围
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,椭圆经过点M(2,1),平行于OM的直线L在y 轴上的截距m(m不等于0),L交椭圆A,B两个不同点。求椭圆的方程和m的取值范围
1、设椭圆的长轴为a,则短轴为a/2,焦点在x轴上
椭圆方程可表示为 x^2/a^2+y^2/(a/2)^2=1
把(2,1)代入椭圆方程
4/a^2+1/(a^2/4)=1
4/a^2+4/a^2=1
a^2=8,a^2/4=2
所以椭圆方程为 x^2/8+y^2/2=1
2、根据两点式,OM所在直线方程为
(y-0)/(1-0)=(x-0)/(2-0)
化简得 y=x/2
直线l平行于OM,所以l的斜率为1/2
又因为当x=0,y=m
所以l的解析式为 y=x/2+m
把 y=x/2+m 代入椭圆方程
x^2/8+(x/2+m)^2/2=1
化简得 2x^2-4mx+m^2-8=0
l与椭圆有两个不同的交点,判别式△>0
△=(-4m)^2-4*2*(m^2-8)
=16m^2-8m^2+64
=64-8m^2>0
解得 -2√2
椭圆方程可表示为 x^2/a^2+y^2/(a/2)^2=1
把(2,1)代入椭圆方程
4/a^2+1/(a^2/4)=1
4/a^2+4/a^2=1
a^2=8,a^2/4=2
所以椭圆方程为 x^2/8+y^2/2=1
2、根据两点式,OM所在直线方程为
(y-0)/(1-0)=(x-0)/(2-0)
化简得 y=x/2
直线l平行于OM,所以l的斜率为1/2
又因为当x=0,y=m
所以l的解析式为 y=x/2+m
把 y=x/2+m 代入椭圆方程
x^2/8+(x/2+m)^2/2=1
化简得 2x^2-4mx+m^2-8=0
l与椭圆有两个不同的交点,判别式△>0
△=(-4m)^2-4*2*(m^2-8)
=16m^2-8m^2+64
=64-8m^2>0
解得 -2√2
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,椭圆经过点M(2,1),平行于OM的直线L在y 轴上的截
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,椭圆经过点M(2,1),平行于OM的直线L在y
如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线l在y轴上的截距
如图已知椭圆的中心在原点,焦点在X轴上,长轴是短轴的2倍,且点M(2,1)在椭圆上,平行于OM的直线l在y轴上的截距为m
(本小题满分12分)已知椭圆的中心在原点,焦点在 轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线 在
已知椭圆的中心在原点,焦点在x轴上,焦距为2根号15,且经过点M(4,1)直线l:x-y+m=0交椭圆于不同的两点
已知椭圆中心在原点 焦点在x轴上焦距为2倍根号15,经过点M(4.1)直线l:x-y+m=0交椭圆于不同两点.求m取值范
已知中点在原点O,焦点在x轴上的椭圆c过点M(2,1)离心率为√3/2,如图,平行于OM的直线l交椭圆c于不同的两点A,
已知中心在坐标原点O,焦点在x轴上,长轴长是短轴长的2倍的椭圆经过点M=(2.1)求椭圆方程
已知中心在坐标原点,焦点在x轴上的椭圆的离心率为2分之根号3,直线x+y-1=0与它相交于M,N2点向量OM*ON=-7
已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A,B两点,M为AB中点,OM斜率为0.25,椭圆的短轴长为2
已知椭圆中心在原点 焦点在x轴上 焦距为2倍根号15,经过点M(4.1)直 线l:x-y+m=0交椭 圆于不同的两点A,