已知中点在原点O,焦点在x轴上的椭圆c过点M(2,1)离心率为√3/2,如图,平行于OM的直线l交椭圆c于不同的两点A,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 19:03:31
已知中点在原点O,焦点在x轴上的椭圆c过点M(2,1)离心率为√3/2,如图,平行于OM的直线l交椭圆c于不同的两点A,B
(1)当直线l经过椭圆c的左焦点时,求直线l的方程
(2)证明:直线MA,MB与x轴总围成等腰三角形
(1)当直线l经过椭圆c的左焦点时,求直线l的方程
(2)证明:直线MA,MB与x轴总围成等腰三角形
设椭圆方程是x^2/a^2+y^2/b^2=1
e^2=c^2/a^2=1-b^2/a^2=3/4,b^2/a^2=1/4
又点(2,1)在椭圆上,则有4/a^2+1/b^2=1,a^2=4b^2
解得b^2=2,a^2=8
故椭圆方程是x^2/8+y^2/2=1.
(2)
直线OM的斜率k=1/2
∵L//OM ∴kOM=1/2
L在y 轴上的截距m(m不等于0),
则L:y=1/2x+m
{y=1/2x+m
{x²/8+y²/2=1
==>
x²+4(1/2x+m)²-8=0
整理:x²+2mx+2m²-4=0
Δ=4m²-4(2m²-4)
=4(4-m²)>0
-2
e^2=c^2/a^2=1-b^2/a^2=3/4,b^2/a^2=1/4
又点(2,1)在椭圆上,则有4/a^2+1/b^2=1,a^2=4b^2
解得b^2=2,a^2=8
故椭圆方程是x^2/8+y^2/2=1.
(2)
直线OM的斜率k=1/2
∵L//OM ∴kOM=1/2
L在y 轴上的截距m(m不等于0),
则L:y=1/2x+m
{y=1/2x+m
{x²/8+y²/2=1
==>
x²+4(1/2x+m)²-8=0
整理:x²+2mx+2m²-4=0
Δ=4m²-4(2m²-4)
=4(4-m²)>0
-2
已知中点在原点O,焦点在x轴上的椭圆c过点M(2,1)离心率为√3/2,如图,平行于OM的直线l交椭圆c于不同的两点A,
已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为√3/2.过点M(0,3)的直线l与椭圆C相交于AB两点.
已知椭圆E中心在原点O,焦点在X轴上,其离心率e=根号(2/3),过C(-1,0)的直线L与椭圆E相交于A,B两点,且满
已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为根号3/2,过点(0,3)的直线l与椭圆C交与两点A,B.
已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率e=1/2,F为右焦点,斜率K的直线过点F,交椭圆C于P.O两点
已知椭圆的中心在原点,焦点在x轴上,过他的右焦点作斜率为1的直线l交椭圆于A、B两点,若椭圆上存在一点C,使OA向量加O
已知椭圆中心在原点,坐标轴为对称轴,过右焦点作平行于y轴的直线交椭圆于M,N两点,若|MN|=3,椭圆离心率方程2x^2
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,椭圆经过点M(2,1),平行于OM的直线L在y 轴上的截
已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A,B两点,M为AB中点,OM斜率为0.25,椭圆的短轴长为2
已知椭圆C的中点在原点,焦点在X轴上,一条经过点(3,-根号5)且方向向量为a=(-2,根号5)的直线L交椭圆C于A,B
一道圆锥曲线的题椭圆在X轴上,过椭圆的右焦点F作斜率为1的直线l,交椭圆于A,B两点,M为线段AB的中点,射线OM交椭圆
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,椭圆经过点M(2,1),平行于OM的直线L在y