如图,在平面直角坐标系中,A(4,0)B(0,4),点A,C关于x轴对称,A为射线OA上A点右侧一点,过点M作MN⊥CM
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 16:19:35
如图,在平面直角坐标系中,A(4,0)B(0,4),点A,C关于x轴对称,A为射线OA上A点右侧一点,过点M作MN⊥CM交直线AB于N,连BM,使△AMN的面积=2分之3△AMB的面积,若存在,求M点的坐标.如不存在,说明理由
作ND⊥X轴交X轴于D点 连AB.
则S△AMN=AM×ND÷2 ∠ODN=90°.
∵S△AMB=AM×OB÷2
∴ND:OB=S△AMN:S△AMB=3/2.
∵OB=4
∴ND=6
又∵OB=OA=4 ∠AOB=90°
∴∠BAO=45°
∵∠DAN=∠BAO
∴∠DAN=45°
∵∠ODN=90°
∴DN=DA=6
∵MB=MC AB⊥CA
∴∠ACM=∠ANM
∵∠ACM=∠ABM=∠MBO-45°
∴∠ABM=∠ANM
∴BM=MN
∵BM=CM
∴CM=MN
∵∠CMN=90°
∴∠OMC+∠DMN=90°
∵∠OCM+∠OMC=90°
∴∠OCM=∠DMN
在△OCM与△DMN中
∠COM=∠MDN
∠OCM=∠DMN
CM=MN
∴△OCM≌△DMN﹙AAS﹚
∴OM=DN=6 OC=DM=4
∴M﹙6,0﹚
则S△AMN=AM×ND÷2 ∠ODN=90°.
∵S△AMB=AM×OB÷2
∴ND:OB=S△AMN:S△AMB=3/2.
∵OB=4
∴ND=6
又∵OB=OA=4 ∠AOB=90°
∴∠BAO=45°
∵∠DAN=∠BAO
∴∠DAN=45°
∵∠ODN=90°
∴DN=DA=6
∵MB=MC AB⊥CA
∴∠ACM=∠ANM
∵∠ACM=∠ABM=∠MBO-45°
∴∠ABM=∠ANM
∴BM=MN
∵BM=CM
∴CM=MN
∵∠CMN=90°
∴∠OMC+∠DMN=90°
∵∠OCM+∠OMC=90°
∴∠OCM=∠DMN
在△OCM与△DMN中
∠COM=∠MDN
∠OCM=∠DMN
CM=MN
∴△OCM≌△DMN﹙AAS﹚
∴OM=DN=6 OC=DM=4
∴M﹙6,0﹚
如图,在平面直角坐标系中,A(4,0)B(0,4),点A,C关于x轴对称,A为射线OA上A点右侧一点,过点M作MN⊥CM
如图,在平面直角坐标系中,A(4,0)B(0,4),点A为射线OA上A点右侧一点,过点M作MN⊥CM交直线AB于N,连B
在平面直角坐标系中,A(4,0),B(0,-4),C(0,4),点M为射线OA上A点右侧一动点,过点M做MN⊥CM交直线
在平面直角坐标系中,A(4,0),B(0,-4),C(0,4),点M为射线OA上A点右侧一动点,过点M做MN
已知点A(4,0),B为(0,-4)点M为射线OA上A点右侧一动点,过点M作MN⊥MC交直线AB于N,连BM,是否存在点
如图,直角坐标平面内,点O为坐标原点,点A坐标为(1,0),点B在x轴上且在点A的右侧,AB=OA,过点A和B作x
如图,在平面直角坐标系中,点B(0,4),点A是x轴正半轴上的一个动点,设点A坐标为(a,0).动点P在射线BA上运动,
如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线过点O、A
24.如图,在平面直角坐标系中,点A(6,0)、B(0,8)、C(-4,0),点M、N分别为线段AC和射线AB上的动点,
如图,在平面直角坐标系中,已知点A为第二象限内一点,过点A作x轴垂线交x轴于点B,点C为x轴正半轴上一点,且OB、OC的
如图,在平面直角坐标系中,已知A点坐标(4,0)B点坐标(0,8),点M是线段OA上一动点(不与点O,点A重合),点N是
如图,平面直角坐标系中,点A(-3,0),点B(0,3),点C为X轴正半轴上一动点,过点A作AD⊥BC交Y轴于点E