如图,在直角三角形ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,试说BD=2CE的
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 18:31:20
如图,在直角三角形ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,试说BD=2CE的理由.
分别延长BA、CE,两者相交于点F
因为BE⊥CF,所以:∠BEC=∠BEF=90°
BE边公共
已知,∠1=∠2
所以,Rt△BECRt≌△BEF(ASA)
所以,CE=EF
即,CF=2CE
又,∠FCA+∠CDE=90°,∠ABD+∠BDA=90°
所以:∠FCA+∠CDE=∠ABD+∠BDA
而,∠CDE=∠BDA(两者为对顶角)
所以,∠FCA=∠ABD
已知AB=AC
∠CAF=∠BAD=90°
所以,Rt△FCA≌Rt△DBA(ASA)
所以,CF=BD
所以,BD=2CE
因为BE⊥CF,所以:∠BEC=∠BEF=90°
BE边公共
已知,∠1=∠2
所以,Rt△BECRt≌△BEF(ASA)
所以,CE=EF
即,CF=2CE
又,∠FCA+∠CDE=90°,∠ABD+∠BDA=90°
所以:∠FCA+∠CDE=∠ABD+∠BDA
而,∠CDE=∠BDA(两者为对顶角)
所以,∠FCA=∠ABD
已知AB=AC
∠CAF=∠BAD=90°
所以,Rt△FCA≌Rt△DBA(ASA)
所以,CF=BD
所以,BD=2CE
如图,在直角三角形ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,试说BD=2CE的
已知:如图在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于E.求证BD=2CE.
如图,在Rt三角形ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD,CE交BD的延长线于E,求证:BD=2
如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E.
1.如图,在Rt△ABC中,∠BAC=90°AB=AC,BD平分∠ABC,与AC交于点D,CE⊥BD交BD的延长线与点E
在Rt△ABC中,∠BAC=90°,AB=AC,CE⊥BD交BD的延长线于点E,并且∠1=∠2,求证:BD=2CE
如图,在Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于E,BA,CE的延长线
在直角三角形ABC中,AB=AC,角BAC=90度,角1=角2,CE垂直于BD交BD的延长线于点E,试说明BD=2CE的
如图,在等腰三角形ABC中,∠BAC=90°,BD平分∠CBA,CE垂直于BD交BD的延长线于点E,证明BD=2CE
,全等三角形的判定已知,如图,在直角三角形ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于
如图,在直角三角形ABC中,AB=AC,角BAC=90度,角1=角2,CE垂直于BD的延长线于点E,试说明BD=2CE的
已知:如图,在等腰直角三角形ABC中,∠BAC=90°,BD平分∠ABC,交AC于D,过点C做CE⊥BD,交BD的延长线