四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面AC,SC⊥截面AEFG,求证:(1)AE⊥SB AG⊥SD;(2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 15:04:10
四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面AC,SC⊥截面AEFG,求证:(1)AE⊥SB AG⊥SD;(2)AF⊥GE
图片地址.
图片地址.
(1)由图,易知:
∵ SA⊥面ABCD
∴ BC⊥SA;
而 BC⊥BA,且SA和BA是面SAB内两相交直线;
∴BC⊥面SAB
∴BC⊥AE;
由SC⊥面AEFG知:SC⊥AE;
而SC和BC是面SBC内两条相交直线;
∴ AE⊥面SBC;
∴AE⊥SB.
同理可证: AG⊥SD
(2)简单证明过程如下:
有题目容易证得△AEF≡△AGF;
作EM⊥AF于M,GN⊥AF于N;
易证得:EM=GN;
即点M和N是重合的,设他们重合点为O;
由∠EOA=∠GOA=90°得∠EOG=180°;
即E,O,G三点共线;
而EO⊥AF
也就是EG⊥AF
证毕
打完收工!
∵ SA⊥面ABCD
∴ BC⊥SA;
而 BC⊥BA,且SA和BA是面SAB内两相交直线;
∴BC⊥面SAB
∴BC⊥AE;
由SC⊥面AEFG知:SC⊥AE;
而SC和BC是面SBC内两条相交直线;
∴ AE⊥面SBC;
∴AE⊥SB.
同理可证: AG⊥SD
(2)简单证明过程如下:
有题目容易证得△AEF≡△AGF;
作EM⊥AF于M,GN⊥AF于N;
易证得:EM=GN;
即点M和N是重合的,设他们重合点为O;
由∠EOA=∠GOA=90°得∠EOG=180°;
即E,O,G三点共线;
而EO⊥AF
也就是EG⊥AF
证毕
打完收工!
四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面AC,SC⊥截面AEFG,求证:(1)AE⊥SB AG⊥SD;(2
如下图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,E,F分别是SD,SC的中点.求证:(1)BC⊥平面SAB
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=SB,点E为AB的中点,点F为SC的中点
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交S
在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点,求证
在四棱锥S-ABCD中底面ABCD为正方形,侧棱SD⊥底面ABCD,E.F分别为AB,SC中点,证明:EF‖平面SAD
四棱锥S-ABCD的底面是边长为1的正方形,SD⊥底面ABCD,SB=根号3,
四边形ABCD是正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB、SC、SD于E、F、G,求证:AE⊥SB
如图,在四棱锥S-ABCD中,侧棱SA=SB=SC=SD,底面ABCD是菱形,AC与BD交于O点
如图所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.求证:AE⊥S
四棱锥S-ABCD的底面是边长为1的正方形,SD⊥底面ABCD,M是SA上的一点,且SD=根号3.若MD⊥SB,求MD与
如图在四棱锥S——ABCD中,底面四边形ABCD是平行四边形,SC⊥平面ABCD,E为SA的中点,求证平面EBD⊥平面A