作业帮 > 数学 > 作业

★ 设函数f(x) = [ (sinθ / 3) * x^3 ] + [ ((√3)cosθ / 2) * x^2 ]

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:35:44
★ 设函数f(x) = [ (sinθ / 3) * x^3 ] + [ ((√3)cosθ / 2) * x^2 ] + tanθ (.)
★ 设函数f(x) = [ (sinθ / 3) * x^3 ] + [ ((√3)cosθ / 2) * x^2 ]
f'(x)=sinθx²+√3cosθx
f'(1)=sinθ+√3cosθ=(1/2)×sin(θ+π/6)
θ∈[0,5π/12],则θ+π/6∈[π/6,7π/12].
∴θ+π/6=π/2,即θ=π/3时,f'(1)有最大值1/2.
θ+π/6=π/6,即θ=0时,f'(1)有最小值0.
综上,f'(1)的取值范围是[0,1/2].