-高数函数的极限中讲到零比零的不定型,代数学基本定理Pn(x)有(X-X0)的因子是什么意思
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 03:58:22
-高数函数的极限中讲到零比零的不定型,代数学基本定理Pn(x)有(X-X0)的因子是什么意思
还有Pn(x)=(X-X0)的r次方乘上Pn-r(x)且Pn-r(x)不等于零怎么得到的
还有Pn(x)=(X-X0)的r次方乘上Pn-r(x)且Pn-r(x)不等于零怎么得到的
x->x0表示x趋近于x0.零比零的不定型,也就是罗比达法则.
洛必达法则(L'Holpital's Rule),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法. 设 (1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x). 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x). 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.比如利用泰勒公式求解. ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. ④洛必达法则常用于求不定式极限.基本的不定式极限:0/0型;∞/∞型(x→∞或x→a),而其他的如0*∞型,∞-∞型,以及1^∞型,∞^0型和0^0型等形式的极限则可以通过相应的变换转换成上述两种基本的不定式形式来求解.
洛必达法则(L'Holpital's Rule),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法. 设 (1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x). 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x). 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.比如利用泰勒公式求解. ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. ④洛必达法则常用于求不定式极限.基本的不定式极限:0/0型;∞/∞型(x→∞或x→a),而其他的如0*∞型,∞-∞型,以及1^∞型,∞^0型和0^0型等形式的极限则可以通过相应的变换转换成上述两种基本的不定式形式来求解.
-高数函数的极限中讲到零比零的不定型,代数学基本定理Pn(x)有(X-X0)的因子是什么意思
4、关于无穷小概念的理解(定义1):如果函数f(x)当x→x0(或x→∞)时的极限为零,那么称函数f(x)为当x→x0(
在高数教材(同济版)中,定义x趋于x0函数极限为什么去掉x0点?复合函数的极限也强调该问题,去了会会怎样
高数函数极限 连续 若f(x)在x0的领域内有定义,且f(x0-0)=f(x0+0),则f(x)在x0处是否有极限,是否
高数极限定义~用定义证明lim (x^2-1)/(x^2-x)=2(x趋于1)我在证明这个过程中想知道函数x趋于x0时的
有一个问题谁能帮帮啊:函数 f(x) 在x0 处一阶导数为零,那么(x0,f(x0))这一点要么是函数的一个极值点
证明函数的极限证明:当x0不为0时、1/x趋于1/x0(x趋于x0).(要求用e-€定义证明)
关于x→x0的函数极限
已知阿尔法是函数f(x)=3分之2的x次减去lnx的零点,且0小于x0小于阿尔法,则f(x0)的值大于零小于零还是等于零
函数极限的有关问题高等数学中,有一个定理:在自变量的同一变化过程中x-->x0中,函数f(x)具有极限A的充要条件是f(
泰勒公式中为啥f(x)-pn(x)/(x-x0)∧n的极限等于0就说明有n+1阶导数?
函数极限的保号性问题,在高数37页的定理3‘有结论|f(x)|>|A|/2怎么证明啊