作业帮 > 数学 > 作业

初二上超难几何题1·△ABC中,AC=BC,AB⊥BC,∠CAB\∠B=45°,D1,D2,Dn-1是边CB上的N等分点

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 12:12:30
初二上超难几何题
1·△ABC中,AC=BC,AB⊥BC,∠CAB\∠B=45°,D1,D2,Dn-1是边CB上的N等分点,从C做A D1的垂线,分别交AD1,AD2,...ADn-1,AB与P1,P2,...Pn-1,Pn点,连接Pn Dn-1.
求证:∠A D1 C=∠B Dn-1 Pn
2·已知D是等腰三角形ABC底边BC上一点,他到两腰AB、AC的距离分别为DE、DF.
(1)当D是线段BC上任意一点时,试探究DE+DF是一定值,并加以证明.
(2)当D是线段BC延长线上一点时,(1)中结论还成立吗?若成立,请证明;若不成立,请写出你的结论
初二上超难几何题1·△ABC中,AC=BC,AB⊥BC,∠CAB\∠B=45°,D1,D2,Dn-1是边CB上的N等分点
第一题实在看不懂,问题都不知道是证全等还是面积相等?
第二题,连接AD ,1/2*AB*DE+1/2*AC*DF=三角形ABC面积,因为等腰,AC=AB,所以(DE+DF)=三角形面积的两倍除以AB.三角形确定,DE+DF的值就是定值.
第二题第二小题,不成立.同理连接AD ,三角形ABC面积=三角形ABD面积减去三角形ACD面积.
一样的 ,三角形确定,证得DE-DF的值就是定值.