已知圆X2+Y2=5 椭圆:2x2+3y2=6,过圆上任意一点P做椭圆的两条切线,若其斜率都存在,求其斜率之积是定值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 03:10:02
已知圆X2+Y2=5 椭圆:2x2+3y2=6,过圆上任意一点P做椭圆的两条切线,若其斜率都存在,求其斜率之积是定值
设圆上任意点为P(m,n),则有 m^2+n^2=5
设过P点的直线斜率为k,则有 y=k(x-m)+n
代入椭圆得 2x^2+3[k(x-m)+n]^2=6,
整理得
(2+3k^2)x^2-6k(km-n)x+3[(km-n)^2-2]=0
过椭圆外一点可做两条椭圆的切线,设其斜率分别为k1,k2
则当k取定值时,直线与椭圆只有一个交点
即有 △=[6k(km-n)]^2-4*3(2+3k^2)[(km-n)^2-2]=0
整理化简可得 (m^2-3)k^2-2mnk+n^2-2=0
那么,k1,k2即为上述方程的两个解
∴由韦达定理有 k1k2=(n^2-2)/(m^2-3)
由m^2+n^2=5经适当变形可得n^2-2=3-m^2=-(m^2-3)
即有 (n^2-2)/(m^2-3)=-1
∴有 k1k2=-1,即两切线斜率乘积为-1
设过P点的直线斜率为k,则有 y=k(x-m)+n
代入椭圆得 2x^2+3[k(x-m)+n]^2=6,
整理得
(2+3k^2)x^2-6k(km-n)x+3[(km-n)^2-2]=0
过椭圆外一点可做两条椭圆的切线,设其斜率分别为k1,k2
则当k取定值时,直线与椭圆只有一个交点
即有 △=[6k(km-n)]^2-4*3(2+3k^2)[(km-n)^2-2]=0
整理化简可得 (m^2-3)k^2-2mnk+n^2-2=0
那么,k1,k2即为上述方程的两个解
∴由韦达定理有 k1k2=(n^2-2)/(m^2-3)
由m^2+n^2=5经适当变形可得n^2-2=3-m^2=-(m^2-3)
即有 (n^2-2)/(m^2-3)=-1
∴有 k1k2=-1,即两切线斜率乘积为-1
已知圆X2+Y2=5 椭圆:2x2+3y2=6,过圆上任意一点P做椭圆的两条切线,若其斜率都存在,求其斜率之积是定值
已知圆:x2+y2=5,椭圆:2x2+3y2=6,过圆上任意一点做椭圆两条切线,若切线都存在斜率,求斜率之积为定值
知圆:x2+y2=5,椭圆:2x2+3y2=6,过圆上任意一点做椭圆两条切线,若切线都存在斜率,求斜率之积为定值
问一道高中解析几何已知椭圆 x2/a2 + y2/b2 =1,圆O:x2+y2=b2 ,过椭圆上一点P引圆O的两条切线,
已知椭圆x2/a2+y2/b2=1(a>b>0)和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,
已知椭圆X2\2+y2=1,求椭圆斜率为2的切线方程
已知P是椭圆x2/+y2/9=1上一点非顶点,过点P作圆x2+y2=1的两条切线,切点分别为A,B,直线AB与x,y轴
过椭圆x216+y24=1上一点P作圆x2+y2=2的两条切线,切点为A,B,过A,B的直线与两坐标轴的交点为M,N,则
过椭圆x29+y24=1上一点H作圆x2+y2=2的两条切线,点A,B为切点,过A,B的直线l与x轴,y轴分布交于点P,
已知点P是圆C:x2+y2=1外一点,设k1,k2分别是过点P的圆C两条切线的斜率.
已知焦点在x轴的椭圆方程为x2/3加y2/b2=1,过椭圆长轴的两顶点做圆x2+y2=b2的切线,
求过椭圆x2/4+y2/9=1的下焦点且斜率为2的直线该椭圆所得的弦长 已知斜率为1的直线L过椭圆x2+y2=1的右焦点