问一道高中解析几何已知椭圆 x2/a2 + y2/b2 =1,圆O:x2+y2=b2 ,过椭圆上一点P引圆O的两条切线,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 14:50:57
问一道高中解析几何
已知椭圆 x2/a2 + y2/b2 =1,圆O:x2+y2=b2 ,过椭圆上一点P引圆O的两条切线,切点分别问A,B.设直线AB与X轴,Y轴分别交于M,N两点,求证:a2/ON^2 + b2/OM^2 为定值.
这题好像不难,但是就是算不出来...
已知椭圆 x2/a2 + y2/b2 =1,圆O:x2+y2=b2 ,过椭圆上一点P引圆O的两条切线,切点分别问A,B.设直线AB与X轴,Y轴分别交于M,N两点,求证:a2/ON^2 + b2/OM^2 为定值.
这题好像不难,但是就是算不出来...
再问: 看不懂哦,是不是省了一些步骤? 比如说直线PA,PB是怎么来的,直线AB又是如何从上面两个式子得到的.
再答: 没有省啊。圆x^2+y^2=r^2上一点(m,n)处的切线就是mx+ny=r^2,由此得到PA、PB的方程。 然后将P点坐标代入方程。因为A、B坐标都满足方程x0x+y0y=b^2,所以直线AB的方程就是x0x+y0y=b^2。(这题的难点就是求AB的方程,而这种方法是很巧妙的,避开了很繁琐的计算,你再好好想一下,还有问题再hi我 )
问一道高中解析几何已知椭圆 x2/a2 + y2/b2 =1,圆O:x2+y2=b2 ,过椭圆上一点P引圆O的两条切线,
已知椭圆x2/a2+y2/b2=1(a>b>0)和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,
过椭圆x2/a2+y2/b2=1的一个顶点作圆x2+y2=b2的两条切线,点分别问A,B,若角AOB为90度,则椭圆C的
高中解析几何题目一道已知椭圆C:X2/a2+y2/b2=1(a>b>1)的长轴的两端点是A.B.若椭圆上存在点P使角AP
已知椭圆x2/a2+y2/b2=1,以原点为圆心,a为半径作圆,过点P(a2/c,0)作圆的两条切线
如图,已知p是椭圆x2\a2+y2\b2=1(a>b>0)上且位于第一象限的一点,F是椭圆的右焦点,O是椭圆中心,B是椭
解析几何 p是椭圆X2/a2+Y2/b2=1上的任意一点 且向量OQ=PF1+PF2 O为原点 F1,F2为焦点 求Q的
已知椭圆方程x2\a2+y2\b2=1(a>b>0),设F为椭圆的一个焦点,P是椭圆上的一点
一道高中数学题已知椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点是F1,F2,若在椭圆上存在一点P使得PF1=2
已知椭圆Rx2/a2+y2/b2=1的右焦点F,y轴右侧的点A在椭圆E上运动,直线MA与圆O,x2+y2=b2相切于点M
在平面直角坐标系中,椭圆C:x2/a2+y2/b2=1(a>b>c)圆O:x2+y2=a2,且过点
已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过